Solutions to some additional M2P1 exercises

Exercise.Let f be the function defined as follows:

z, z <0,
f(x)—{ 1+z, x>0

Prove in two different ways that is not continuous at 0.

Solution.

Method 1. To get a contradiction, let us suppose tlfias continuous af. Then for every > 0 there is
ad > 0suchthatz| < § = |f(z) — f(0)| < e. Let us takes = 1. Then there exists & > 0 such that
|z| < 6 = |f(z) — 1| < . However, for anyy > 0, settingz = —g, we find thatd < g = |z| < ¢ but

|f(x) =1 =1+ % > 1. Contradiction. Hencg is discontinuous at 0.

Method 2. We can also use the theorem linking continuity with sequences.(d,gtand (y,) be se-
quences such that, = 1 andy, = —%,n € N. Thenf(z,) = 1+ + — 1 whereasf(y,) = — — 0.

—on

Hencef is not continuous &t by Theorem 6.5 (M1P1).

Exercise.Define f : R? — R such thatf(z) = x5 for all z = (21, 22) € R2. Prove (directly from the
definition of continuity) that this function is continuous at@l= (a1, az) € R2,

Solution. Leta € R2. Fix e > 0. Observe that inequalitigs; — a;1| < |z — a| and|zy — az| < |z — a|
are obviously valid. Then we observe

|f(x) — fla)| = |x122 — ara2] = |z122 — @122 + @122 — araz| < |x2||z1 — a1| + |a1]|ze — az] <

(lz2| + |ar])|z — a| < (lw2 — a2| + |ag| + |ax))|e — a| < |z — al* + (Ja1| + | az|)| z — al.

Now we can use two methods to choa@selependent on the taste.

Method 1. Letd = min{l,¢/(1 + |a1| + |az2|)}. Let |z — a| < §. Then|zs| < |z2 — ag| + |ag| <
|x —al+|az| < 14 |asz|, SO by the above estimates we can conclyde) — f(a)| < (|z2|+]a1|)|z—al <
(1+ ag| + |aa|)d <e.
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Method 2. We can uséz —a|2+ (| a1|+| az|)| 2 —a| < e & |z —a|+ 22l o [e—l— (M) ] :

1 1
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which s equivalent tbz—a| < [H(m)} _laiHoal g0 ifwe takes = [H(M)} -

W, thend > 0 and| f(z) — f(a)] < |2 —al?* + (|a1| + | a2|)| z — a| < € by the estimates above.
Hencef is continuous at € R2.

Exercise. Define f : R2\{0} — R by f(z) = i forallz € R2\{0}. Doesf have a limit asc — 0?
Justify your answer.

Solution. This functionf has no limit asc — 0. Indeed, let us take sequendes) and(y,) defined by
zm = (%,0) andy, = (0,1). Both sequences converge(d 0) but z, # (0,0), y,, # (0,0) for all n.
Now, for alln > 1, f(z,) = 1 — 1, whereasf(y,) = 0 — 0. Thus by the Theorem 6.5 (M1P1) and
Theorem 1.3 we conclude that there isine R? such thatf(x) — [ asz — 0.

Exercise.Suppose thaf is a function such thaf’(x) = 0 for all z € R. Prove thatf must be a constant
function.

Solution. Since f is differentiable everywhere, it is also continuous everywhere by Theorem 3.1. Let
a < b be two points inR. Thenf is continuous ona, b] and differentiable orta, b). By the Mean Value



Theorem 4.3, there exists@ac (a,b) such thatf’(c) = f(bl)):i(“). But by assumption we must have

f'(c) = 0. This impliesf(a) = f(b). Since the choice of andb was arbitrary, it follows thaff is
constant.

Theorem. Suppose thaf is continuous on a closed intervial, b]. Then f is bounded (both above and
below) onla, b].

Proof. Assume thaff is not bounded above dn, b]. Then for all real numbera/ there exists: € [a, b]

such thatf(z) > M. In particular, for every: € N there exists some,, € [a, b] such thatf(z,) > n.
Sincea < z,, < b, sequencéz,,) is bounded and by the Bolzano-Weierstrass Theorem has a convergent
subsequence, sdy.,,), converging to some. By the basic property of closed intervals it follows that

u € [a,b]. Sinceu,, — u and f is continuous ona, b], hence also at, it follows that f (u,,) — f(u)

asm — oo. Since(u,,) is a subsequence ¢t,,), we haveu,, = x,, for some index: > m. It follows
that f (u,,) = f(zn) > n > m. Hencef(u,,) > m for all m € N. This contradictsf (u,,) — f(u) as

m — oo. Indeed, if we take anyn € N such thatn > f(u) + 1 we see thaff (uy,) > m > f(u) + 1,

so that(f(u,,)) can not converge tg(u) asm — oo. Repeating the proof for f we find that— f is
bounded above, spis also bounded below. This completes the proof.

Exercise. State true or false with reasoning:
(i) If fis bounded ora, b] then f is continuous otja, b].
(i) If fis continuous orfa, b) then f is bounded orfa, b).

Solution. (i) False. Considef defined by

1, >1,
f(””)_{o, x <1

Thenf is bounded oif0, 2] (e.g. by2) but itis not continuous on the intervél, 2] since it is discontinuous
atl.

(ii) False. Considelf such thatf(z) = < on the interval0, 1). Thenf is continuous at ak € (0,1) by
Theorem 1.3. Howevef is not bounded o1(0, 1). Indeed, letA > 0. Let = & > 0. Then0 < z < §
impliesz < § = %, sof(z) = L > A. Hencef is not bounded above (and hence not bounded) on the

T

interval (0, 1), even though it is continuous df, 1).

Exercise.Let g(z) — m asx — a andf(y) — [ asy — m. Show that this does not implf(g(x)) — 1
asr — a.

Solution. Let g(z) = 0 for all z. Leta = 0. Theng(z) — m = 0 asz — a = 0. Define

w={ g 170

Thenf(y) > l=1asy > m=0butf (g9(z)) = f(0)=0—>0#1asz —a=0.



