
Solutions to some additional M2P1 exercises

Exercise.Let f be the function defined as follows:

f(x) =

{
x, x < 0,
1 + x, x ≥ 0.

Prove in two different ways thatf is not continuous at 0.

Solution.
Method 1. To get a contradiction, let us suppose thatf is continuous at0. Then for everyε > 0 there is
a δ > 0 such that|x| < δ ⇒ |f(x)− f(0)| < ε. Let us takeε = 1

2 . Then there exists aδ > 0 such that
|x| < δ ⇒ |f(x)− 1| < 1

2 . However, for anyδ > 0, settingx = − δ2 , we find that0 < δ
2 = |x| < δ but

|f(x)− 1| = 1 + δ2 ≥
1
2 . Contradiction. Hencef is discontinuous at 0.

Method 2. We can also use the theorem linking continuity with sequences. Let(xn) and(yn) be se-
quences such thatxn = 1

n andyn = − 1n , n ∈ N. Thenf(xn) = 1 + 1n → 1 whereasf(yn) = − 1n → 0.
Hencef is not continuous at0 by Theorem 6.5 (M1P1).

Exercise.Definef : R2 → R such thatf(x) = x1x2 for all x = (x1, x2) ∈ R2. Prove (directly from the
definition of continuity) that this function is continuous at alla = (a1, a2) ∈ R2.

Solution. Let a ∈ R2. Fix ε > 0. Observe that inequalities|x1 − a1| ≤ |x− a| and|x2 − a2| ≤ |x− a|
are obviously valid. Then we observe

|f(x)− f(a)| = |x1x2 − a1a2| = |x1x2 − a1x2 + a1x2 − a1a2| ≤ |x2||x1 − a1|+ |a1||x2 − a2| ≤

(|x2|+ |a1|)|x− a| ≤ (|x2 − a2|+ |a2|+ |a1|)|x− a| ≤ |x− a|
2 + (| a1|+ | a2|)|x− a|.

Now we can use two methods to chooseδ, dependent on the taste.
Method 1. Let δ = min{1, ε/(1 + |a1| + |a2|)}. Let |x − a| < δ. Then|x2| ≤ |x2 − a2| + |a2| ≤
|x−a|+ |a2| < 1+ |a2|, so by the above estimates we can conclude|f(x)−f(a)| ≤ (|x2|+ |a1|)|x−a| <
(1 + |a2|+ |a1|)δ ≤ ε.

Method 2. We can use|x−a|2+(| a1|+ | a2|)|x−a| < ε⇔ |x−a|+
| a1|+| a2|
2 <

[

ε+
(
| a1|+| a2|
2

)2]
1
2

,

which is equivalent to|x−a| <

[

ε+
(
| a1|+| a2|
2

)2]
1
2

− | a1|+| a2|2 . So, if we takeδ =

[

ε+
(
| a1|+| a2|
2

)2]
1
2

−

| a1|+| a2|
2 , thenδ > 0 and| f(x)− f(a)| ≤ |x− a|2 + (| a1|+ | a2|)|x− a| < ε by the estimates above.

Hencef is continuous ata ∈ R2.

Exercise. Definef : R2\{0} → R by f(x) = x1
|x| for all x ∈ R2\{0}. Doesf have a limit asx → 0?

Justify your answer.

Solution. This functionf has no limit asx → 0. Indeed, let us take sequences(zn) and(yn) defined by
zn = (

1
n , 0) andyn = (0, 1n). Both sequences converge to(0, 0) but zn 6= (0, 0), yn 6= (0, 0) for all n.

Now, for all n ≥ 1, f(zn) = 1 → 1, whereasf(yn) = 0 → 0. Thus by the Theorem 6.5 (M1P1) and
Theorem 1.3 we conclude that there is nol ∈ R2 such thatf(x)→ l asx→ 0.

Exercise.Suppose thatf is a function such thatf ′(x) = 0 for all x ∈ R. Prove thatf must be a constant
function.

Solution. Sincef is differentiable everywhere, it is also continuous everywhere by Theorem 3.1. Let
a < b be two points inR. Thenf is continuous on[a, b] and differentiable on(a, b). By the Mean Value



Theorem 4.3, there exists ac ∈ (a, b) such thatf ′(c) = f(b)−f(a)
b−a . But by assumption we must have

f ′(c) = 0. This impliesf(a) = f(b). Since the choice ofa andb was arbitrary, it follows thatf is
constant.

Theorem. Suppose thatf is continuous on a closed interval[a, b]. Thenf is bounded (both above and
below) on[a, b].

Proof. Assume thatf is not bounded above on[a, b]. Then for all real numbersM there existsx ∈ [a, b]
such thatf(x) > M . In particular, for everyn ∈ N there exists somexn ∈ [a, b] such thatf(xn) > n.
Sincea ≤ xn ≤ b, sequence(xn) is bounded and by the Bolzano-Weierstrass Theorem has a convergent
subsequence, say(um), converging to someu. By the basic property of closed intervals it follows that
u ∈ [a, b]. Sinceum → u andf is continuous on[a, b], hence also atu, it follows thatf(um) → f(u)
asm → ∞. Since(um) is a subsequence of(xn), we haveum = xn for some indexn ≥ m. It follows
thatf(um) = f(xn) > n ≥ m. Hencef(um) > m for all m ∈ N. This contradictsf(um) → f(u) as
m → ∞. Indeed, if we take anym ∈ N such thatm ≥ f(u) + 1 we see thatf(um) > m ≥ f(u) + 1,
so that(f(um)) can not converge tof(u) asm → ∞. Repeating the proof for−f we find that−f is
bounded above, sof is also bounded below. This completes the proof.

Exercise.State true or false with reasoning:
(i) If f is bounded on[a, b] thenf is continuous on[a, b].
(ii) If f is continuous on(a, b) thenf is bounded on(a, b).

Solution. (i) False. Considerf defined by

f(x) =

{
1, x ≥ 1,
0, x < 1.

Thenf is bounded on[0, 2] (e.g. by2) but it is not continuous on the interval[0, 2] since it is discontinuous
at1.
(ii) False. Considerf such thatf(x) = 1

x on the interval(0, 1). Thenf is continuous at alla ∈ (0, 1) by
Theorem 1.3. However,f is not bounded on(0, 1). Indeed, letA > 0. Let δ = 1

A > 0. Then0 < x < δ
impliesx < δ = 1

A , sof(x) = 1
x > A. Hencef is not bounded above (and hence not bounded) on the

interval(0, 1), even though it is continuous on(0, 1).

Exercise.Let g(x)→ m asx→ a andf(y)→ l asy → m. Show that this does not implyf (g(x))→ l
asx→ a.

Solution. Let g(x) = 0 for all x. Let a = 0. Theng(x)→ m = 0 asx→ a = 0. Define

f(y) =

{
1, y 6= 0,
0, y = 0

Thenf(y)→ l = 1 asy → m = 0 butf (g(x)) = f(0) = 0→ 0 6= 1 asx→ a = 0.
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