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Chapter 1: Limits and continuity.

Def 1.1 (limits) Suppose f is a function defined for all x in some interval containing a point
a, except (perhaps) at a itself. Then ”f(x)→ l as x→ a” means that given any ε > 0, there
is a δ > 0 such that 0 < |x− a| < δ implies |f(x)− l| < ε. Here and in what follows l should
be a finite number.

Similarly, we can define right and left limits. So, ”f(x)→ l as x→ a+” means ∀ε > 0 ∃δ > 0
such that a < x < a + δ implies |f(x) − l| < ε, and ”f(x) → l as x → a−” means ∀ε > 0
∃δ > 0 such that a− δ < x < a implies |f(x)− l| < ε, respectively.

Relation to continuity in M1P1: ”f is continuous (left cts, right cts) at a” means that (i)
f(a) is defined, and (ii) f(x)→ f(a) as x→ a (x→ a−, x→ a+, resp.)

Basic rules for limits: Suppose f(x)→ l and g(x)→ m as x→ a. Then:
(1.2) f(x) + g(x)→ l +m as x→ a.

(1.3) f(x)g(x)→ lm as x→ a.

(1.4) f(x)/g(x)→ l/m as x→ a, provided m 6= 0.

Connection between limits of sequences and of functions:
(1.5) Suppose f(x)→ l as x→ a. Let xn be any sequence such that (i) xn → a; (ii) xn 6= a

for all n. Then f(xn)→ l.

Rules 1.2-1.4 can be proved either directly using def 1.1 or by first applying 1.5 to reduce
the situation to the corresponding theorem for sequences from M1P1.
Theorem 1.5 is useful in showing that limits do not exist. For example, if f(x) = 1 for
rational x and f(x) = 0 otherwise, we can use Theorem 1.5 so show that f has no limit at
any point. This theorem has the coverse:

(1.6) The following statements are equivalent:
(a) f(x)→ l as x→ a.

(b) f(xn)→ l for every sequence xn such that (i) xn → a, and (ii) xn 6= a for all n.

(1.7) If f(x)→ l, then |f(x)| → |l|.

Rules 1.2-1.4 and 1.7 can be proved directly, or by using Theorem 1.6 and corresponding
theorems for sequences from M1P1. These rules can be applied to continuous functions to
see that if f and g are both continuous at a, then

(1.2’) f + g is continuous at a;
(1.3’) fg is continuous at a;
(1.4’) f/g is continuous at a provided g(a) 6= 0;
(1.7’) |f | is continuous at a.

(1.8) (composition) Suppose g(x)→ l as x→ a and f is continuous at a. Then f(g(x))→ f(l)
as x→ a.
(1.8’) (continuity of compositions) If g is continuous at a and f is continuous at g(a), then
f ◦ g is continuous at a. Here, as usual, (f ◦ g)(x) = f(g(x)).

Remarks on Chapter 1:
(1) everything is valid with no change if x or f(x) are complex.
(2) everything is valid for one-sided limits as well.



Chapter 2: Continuity on closed intervals.

When talking about intervals here, we always mean bounded intervals, i.e. boundaries a and
b are finite real numbers.

Main definition: f is continuous on a closed interval [a, b] if it is continuous at all points of
(a, b), right continuous at a, and left continuous at b. For intervals (a, b] or [a, b) definitions
are similar.

Basic observation: if f is continuous on a interval (α, β) which contains a subinterval [a, b],
then f is continuous on [a, b].

Examples: polynomials are cts on any [a, b], rational functions f/g are cts on any [a, b]
provided g(x) 6= 0 for all x ∈ [a, b].
Theorem 1.5 has a counterpart for one-sided limits:
(2.0) If f is right continuous at a and xn is any sequence such that xn → a and xn ≥ a for
all n, then f(xn)→ f(a). (a similar statement holds for left continuous functions.)

Let f be continuous on a closed interval [a, b]. Then we have the following theorems:

(2.1) (IVT: Intermediate value theorem) f has the intermediate value property (IVP) on [a, b],
which means that if l is any number between f(a) and f(b), then there is some c ∈ [a, b] such
that f(c) = l.
Note that continuous functions on non-closed intervals do not have to have IVP and functions
having IVP are not necessarily continuous.
(2.2) f is bounded (both above and below) on [a, b]. By definition, f is bounded above (below)
on [a, b], if there is a number M (m) such that f(x) ≤M (f(x) ≥ m), for all x ∈ [a, b], resp.
(2.3) (EVT: extreme value theorem) There is some c ∈ [a, b] such that f(x) ≤ f(c) for all
x ∈ [a, b]. Also, there is some c′ ∈ [a, b] such that f(x) ≥ f(c′) for all x ∈ [a, b].

In these cases we say f(c) = max[a,b] f, f(c′) = min[a,b] f , are maximum and minimum of f
on [a, b].

(2.4) Inverse function theorem. Let f : [a, b] → R be strictly increasing and continuous on
[a, b]. Let [c, d] = f([a, b]). Let’s define the inverse function g : [c, d] → [a, b] by x = g(y) iff
y = f(x). Then g is strictly increasing and continuous on [c, d].

Chapter 2E: Exponential and log functions.

For any (real or complex) x we define E(x) = 1+x+ x2

2! + x3

3! +. . . , the sum of an absolutely
convergent series. It follows from this that E(x + y) = E(x)E(y). Setting e = E(1), it was
shown in M1P1 that E(x) = ex for rational x. Here we have the following further properties
of function E:

(2E1) E(x) > 0 for all x ∈ R.
(2E2) E(x) is strictly increasing on R.
(2E3) E(x) is continuous at every x ∈ R.
(2E4) E takes every positive value exactly once.

By Theorem 2.4 we can define the inverse finction log by x = log y iff E(x) = y, for all
positive y > 0.

(2E5) The function log is strictly increasing and continuous at all y > 0.

Using this, for any a > 0 we can define ax by ax = E(x log a). Then it is easy to see that
ax+y = axay, which implies that ax agrees with the usual definition of a power for rational x
(as in M1P1). From (2E3), (2E5) and Theorem 1.8’, we get
(2E6) For any a > 0, the function ax is continuous everywhere.

2



Chapter 3: Differentiation.

Suppose f is defined on some open interval containing a point a. We say f is differentiable
at a if f(a+h)−f(a)

h has a limit as h → 0, and we call this limit f ′(a) = limh→0
f(a+h)−f(a)

h .
We say f is left (right) differentiable if the corresponding limits below exist and we set

f ′−(a) = limh→0−
f(a+h)−f(a)

h and f ′+(a) = limh→0+
f(a+h)−f(a)

h . The main fact relating dif-
ferentiability and continuity is
(3.1) If f is differentiable at a, then f is continuous at a.

The converse is not true, as is shown by the function f(x) = |x| at zero.

Rules for differentiation. Suppose f and g are both d’ble at a. Then
(3.2) f + g is d’ble at a, and (f + g)′(a) = f ′(a) + g′(a).
(3.3) (product rule) fg is d’ble at a, and (fg)′(a) = f ′(a)g(a) + f(a)g′(a).
(3.4) if in addition g(a) 6= 0, then 1/g is d’ble at a, and (1/g)′(a) = −g′(a)/g(a)2.

(3.5) (quotient rule) if in addition g(a) 6= 0, then f/g is d’ble at a, and (f/g)′(a) = [f ′(a)g(a)−
f(a)g′(a)]/g(a)2.

(3.6) (chain rule) Suppose g is d’ble at a and f is d’ble at g(a). Then f ◦ g is d’ble at a, and
(f ◦ g)′(a) = f ′(g(a))g′(a).
(3.7) (inverse function) Suppose f : [a, b] → [c, d] is continuous and strictly increasing, with
inverse function g : [c, d] → [a, b]. Suppose f is d’ble at some point α ∈ (a, b), and that
f ′(α) 6= 0. Then g is d’ble at β = f(α), and g′(β) = 1/f ′(α).

Chapter 4: Functions differentiable on an interval.

As before, we say that f has a (local) maximum at a, if there is a δ > 0 such that |x−a| < δ

implies f(x) ≤ f(a); and f has a (local) minimum at a, if there is a δ > 0 such that |x−a| < δ

implies f(x) ≥ f(a). In what follows, we will always mean local max and local min.

(4.1) Suppose f is d’ble at a, and that f has a (local) maximum or a minimum at a. Then
f ′(a) = 0.

For the following theorems, suppose f and g are continuous on a closed interval [a, b], and
differentiable on its interior (a, b). Then
(4.2) (Rolle’s Theorem) Suppose in addition that f(a) = f(b). Then f ′(c) = 0 for some
c ∈ (a, b).

(4.3) (MVT: Mean value theorem) There is a point c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

(4.4) (Cauchy’s MVT) There is a point c ∈ (a, b) such that (g(b) − g(a))f ′(c) = (f(b) −
f(a))g′(c).

Applications of the MVT:
(4.5) Suppose f ′(x) = 0 for all x ∈ (a, b). Then f is constant on [a, b].
(4.6) Suppose f ′(x) > 0 for all x ∈ (a, b). Then f is strictly increasing on [a, b].
(4.7) (Test for max/min) Suppose that at some point c, f ′(c) = 0 and f ′′(c) exists. Then (i)
if f ′′(c) > 0, f has a minimum at c; (ii) if f ′′(c) < 0, f has a maximum at c.

When calculating limits, it is often useful to use the following
(4.9) (L’Hôpital’s rule, one-sided version) Suppose that
(i) f and g are both d’ble on I = (a, a+ δ). (ii) f(x)→ 0 and g(x)→ 0 as x→ a+ .

(iii) g′ 6= 0 on I. (iv) f ′(x)/g′(x)→ l as x→ a+ .

Then f(x)/g(x)→ l as x→ a+ .

Of course, there is a similar theorem for limits as x→ a−, and hence for two-sided limits as
x→ a.
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Taylor series: If f is a function such that f (k)(a) exist for all k ∈ N, then
∑
k≥0

f (k)(a)
k! hk is

called the Taylor series of f at a. Let Pn−1 be the sum of the first n terms of the Taylor

series, Pn−1(h) =
∑n−1
k=0

f (k)

k! (a)hk, and let f(a + h) = Pn−1(h) + Rn(h). The we have the
following estimates for the remainder Rn:

(4.9) (Taylor’s theorem with Lagrange’s form of the remainder) Fix n ≥ 1 and let h > 0.
Suppose that f, f ′, . . . , f (n−1) are all continuous on [a, a+h] and that f (n) exists on (a, a+h).
Then Rn(h) = hn

n! f
(n)(a+ θh), for some θ ∈ (0, 1).

(4.9’) (Most useful form of Taylor’s theorem) Suppose f is n times d’ble on some open interval
I containing a. Then if a+ h ∈ I, we have Rn(h) = hn

n! f
(n)(a+ θh), for some θ ∈ (0, 1).

Chapter 5: Riemann integration.

A partition ∆ of [a, b] is any finite subset of [a, b] that contains a and b. If it has n + 1
points, we write it in the form ∆ = {a = x0 < x1 < . . . < xn−1 < xn = b}. Let f be
a bounded function on [a, b]. Given a partition ∆, let Mi = l.u.b.x∈[xi−1,xi]f(x) and mi =
g.l.b.x∈[xi−1,xi]f(x). We define upper and lower Riemann sums by S(f,∆) =

∑n
i=1Mi(xi −

xi−1) and s(f,∆) =
∑n
i=1mi(xi − xi−1). Let us now define upper and lower Riemann

integrals J(f) = g.l.b.{S(f,∆) : over all finite partitions ∆} and j(f) = l.u.b.{s(f,∆) :
over all finite partitions ∆}. Function f is Riemann integrable over [a, b] if j(f) = J(f). In
that case we define

∫ b
a f = j(f) = J(f). We have the following properties:

(5.1) Let M = l.u.b.{f(x) : x ∈ [a, b]}, m = g.l.b.{f(x) : x ∈ [a, b]}. Then m(b − a) ≤ s(f,∆) ≤ S(f,∆) ≤
M(b− a).
(5.2) j(f) ≤ J(f) for any bounded f .
(5.3) If ∆′ = ∆ ∪ {c} is obtained from ∆ by adding one more subdivision point c, then S(f,∆′) ≤ S(f,∆)
and s(f,∆) ≤ s(f,∆′).
(5.4) Let ∆′ be any subdivision of ∆ (i.e. ∆′ is obtained from ∆ by adding more points, ∆ ⊂ ∆′). Then
S(f,∆′) ≤ S(f,∆) and s(f,∆) ≤ s(f,∆′).
(5.5) Let ∆1 and ∆2 be any two partitions of [a, b]. Then s(f,∆1) ≤ S(f,∆2).

The following are useful criteria for Riemann integrability:
(5.6) (ε-criterion for Riemann integrability) Suppose that for any ε > 0 there is a partition ∆ of [a, b] such
that S(f,∆)− s(f,∆) < ε. Then f is Riemann integrable over [a, b].
(5.7) Let f be monotonic on [a, b]. Then f is Riemann integrable over [a, b].

To prove that all continuous functions are Riemann integrable, we need
(5.8) Let f be continuous on [a, b]. Then f is uniformly continuous on [a, b], i.e. given any ε > 0, there is a
δ > 0 such that for any x, y ∈ [a, b], condition |x− y| < δ implies |f(x)− f(y)| < ε.

(5.9) Let f be continuous on [a, b]. Then f is Riemann integrable over [a, b].

We have the following properties of the integral:
(5.10) (linearity of the integral) Let c be a constant and suppose f and g are both Riemann integrable over

[a, b]. Then so is cf + g, and
∫ b
a

(cf + g) = c
∫ b
a
f +

∫ b
a
g.

(5.11) Let f and g be any bounded functions on [a, b]. Then J(f+g) ≤ J(f)+J(g) and j(f+g) ≥ j(f)+j(g).

(5.12) Let a < c < b and suppose that f is continuous on [a, b]. Then
∫ b
a
f =

∫ c
a
f +

∫ b
c
f, where all integrals

make sense.
(5.13) (preparation for FTC) Let f be continuous on [a, b]. Then f is Riemann integrable over [a, x] for all
x ∈ [a, b], so it makes sense to define φ(x) =

∫ x
a
f (by convention, φ(a) = 0). Then φ is d’ble on (a, b),

continuous on [a, b], and φ′(c) = f(c) for all c ∈ (a, b).
(5.14) (FTC: fundamental theorem of calculus) Suppose f is continuous on [a, b], and let F be any function that

is continuous on [a, b], d’ble on (a, b) and such that F ′(x) = f(x) for all x ∈ (a, b). Then
∫ b
a
f = F (b)− F (a).
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