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List of definitions, statements and examples.

Chapter 1: Limits and continuity.

This chapter is mostly the revision of Chapter 6 of M1P1. First we consider functions f(x)
where x and f(z) are real.

(6.1)(M1P1) (continuity) Suppose f is a function defined for all  in some interval containing
a point a. Then we say that f is continuous at a if given any € > 0, there is a § > 0 such
that |z — a| < § implies |f(z) — f(a)| <e.

(6.2)(M1P1) (limits) Suppose f is a function defined for all « in some interval containing a
point a, except (perhaps) at a itself. Then “f(z) — [ as x — a” means that given any ¢ > 0,
there is a § > 0 such that 0 < |z — a| < § implies |f(z) — | <e.

Here and in what follows [ should be a finite number. Note that the main and only difference
between these two definitions is that when we take a limit of a function f at a point a, we
do not require f(a) to be defined. That is why we have to require 0 < |z — a| to insure that
x # a, and to replace f(a) by a real number [ since f(a) may be no longer defined. For the
limit of f at a, the values of f around a, not at a, are important!
(6.3)(M1P1) Revise examples of continuous functions and limits.

Similarly, we can define right and left limits. So, “f(z) — [ as x — a+" means Ve > 036 > 0
such that a < x < a + ¢ implies |f(z) — ] < ¢, and “f(z) — [ as * — a—" means Ve > 0
36 > 0 such that a — § < z < a implies |f(z) — I| < €, respectively.

Relation between limits and continuity: “f is continuous (left cts, right cts) at a” means that
(i) f(a) is defined, and (ii) f(z) — f(a) as * — a (x — a—, © — a+, resp.)

Simple facts:
(i) f(x) =l asz — a if and only if f(x) — 1 as ¢ — a— and f(x) — | as z — a+.
ii) f is continuous at a if and only if f is left and right continuous at a.

a) f(z) > lasz— a.

(
(6.4)(M1P1) (limits in terms of sequences) The following statements are equivalent:
(
(b) f(xy,) —  for every sequence x,, such that (i) z,, — a, and (ii) z,, # a for all n.

This theorem is useful in showing that limits do not exist. For example, if f(z) = 1 for
rational « and f(x) = 0 otherwise, we can use part (b) to show that f has no limit at any
point. Using the relation between limits and continuity, we get:

(6.5)(M1P1) (continuity in terms of sequences) The following statements are equivalent:
a) f is continuous at a.
b) f(x,) — f(a) for every sequence x,, such that z,, — a.

(
(
(6.6)(M1P1) (basic rules for limits) Suppose f(z) — ! and g(z) — m as & — a. Then
(i) cf(z) — cl for any c € R;

(ii) f(z) +g(x) =1+ mas xz — q;

(iii) f(z)g(z) — lm as x — a;

(iv) f(z)/g(z) — I/m as x — a, provided m # 0;

(v) |f(x)| = |l| as x — a.

This theorem can be proved either directly using € and J, or by using characterisation
(6.4)(M1P1) and corresponding theorems for sequences from M1P1. These rules can be
applied to continuous functions:



6.7)(M1P1) (basic rules for continuity) Suppose f and g are both continuous at a. Then
i) ¢f is continuous at a for any ¢ € R;

ii) f+ g is continuous at a;

iii) fg is continuous at a;

iv) f/g is continuous at a, provided g(a) # 0;

v) |f| is continuous at a.
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6.8)(M1P1) (limit of compositions) Suppose g(x) — | as x — a and f is continuous at a.
Then f(g9(z)) — f(l) as z — a.

(6.9)(M1P1) (continuity of compositions) If g is continuous at a and f is continuous at g(a),
then f o g is continuous at a. Here, as usual, (f o g)(z) = f(g(x)).

Remarks:
(1) everything is valid with no change if x or f(x) are complex.
(2) everything is valid for one-sided limits as well.

All of the theorems above can be also extended to higher dimensions. The only thing to
change is the notion of the distance! Thus, for points x,y € R", we define

’x_y’ = \/(3:1 _y1)2+'”+(xn_yn)27

where z = (21, ,2,) and y = (y1,--- ,yn). Then we can simply repeat definitions from
M1P1 using this new distance where necessary.

(1.0) Let z,, be a sequence of points in R™ and let x € R™. We will say that =, — x as
n — oo if |z, — x| — 0 as n — oo.

Here |z, —z| is a sequence of real numbers, so we already know from M1P1 how to understand
its convergence to zero. We will also define a ball Bs(a) with radius § centred at a by
Bs(a) = {z € R" : |z — a|] < 0}. Balls will now replace the intervals! We will consider real
valued functions, i.e. f(x) is real though z is in R™. With this in mind, definitions (6.1) and
(6.2) above become:

(1.1) (continuity in R™) Suppose f is a function defined for all z in some ball containing a
point a. Then we say that f is continuous at a if given any € > 0, there is a 6 > 0 such that
|z — a| < § implies |f(z) — f(a)| <e.

(1.2) (limits in R™) Suppose f is a function defined for all z in some ball containing a point
a, except (perhaps) at a itself. Then ” f(z) — [ as © — a” means that given any € > 0, there
is a d > 0 such that 0 < |z — a| < ¢ implies |f(z) — ] < e.

(1.3) (Main Theorem of Chapter 1) Theorems (6.4)—(6.9) (M1P1) remain valid if we replace
definitions (6.1) and (6.2)(M1P1) by definitions (1.1) and (1.2), respectively.

Remark: everything is still valid for functions f : R® — R™ or f : C* — C" if we use the
n-dimensional distance for values of f as well.

Chapter 2: Continuity on closed intervals.

In the next chapters we will work in one dimension and will assume that z and f(z) are real.
When talking about intervals here, we always mean bounded intervals, i.e. boundaries a and
b are finite real numbers, satisfying —oo < a < b < +00. As usual, we define open and closed
intervals by (a,b) ={xr € R:a <z <b} and [a,b] ={z € R:a <z <b}.

Main definition: f is said to be continuous on a closed interval [a,b] if it is continuous at all
points of (a,b), right continuous at a, and left continuous at b. For intervals (a,b] or [a,b)
definitions are similar.



Trivial observation: if f is continuous on an interval («, 3) which contains a subinterval [a, b],
then f is continuous on [a, b].

Examples: polynomials are continuous on any [a, b], rational functions f/g are continuous on
any |a,b] provided g(z) # 0 for all = € [a, b].

Theorems in Chapter 6 of M1P1 and in our Chapter 1 have counterparts for one-sided limits.
For example, the counterpart of Theorem 6.4 (M1P1) is:

(2.0) Function f is right continuous at a if and only if f(x,) — f(a) for every sequence z,,
such that (i) z, — a, and (ii) x,, > a for all n. (a similar statement holds for left continuous
functions)

We have the following important properties of continuous functions on closed intervals:

(2.1) (IVT: Intermediate Value Theorem) Let f be continuous on a closed interval [a, b]. Then
f has the intermediate value property (IVP) on [a,b], which means that if [ is any number
between f(a) and f(b), then there is some ¢ € [a, b] such that f(c) =

Note that continuous functions on non-closed intervals do not have to satisfy IVP and func-
tions having IVP on closed intervals are not necessarily continuous. So these two notions are
not at all equivalent.

(2.2) (boundedness theorem) Let f be continuous on a closed interval [a, b]. Then f is bounded
(both above and below) on [a, b], i.e. there is a number M (m) such that f(z) < M (f(z) > m),
for all € [a, b], resp.

(2.3) (EVT: Extreme Value Theorem) Let f be continuous on a closed interval [a,b]. Then
there is some ¢ € [a,b] such that f(x) < f(c) for all x € [a,b]. Also, there is some ¢ € [a, b]
such that f(z) > f(c) for all z € [a,b].

In these cases we say f(c) = maxp,y f, f(¢') = minj,p f, are maximum and minimum of f on
[a,b]. Then we also say that f attains its maximum and minimum at ¢ and ¢, respectively.

(2.4) (IFT: Inverse Function Theorem) Let f : [a,b] — R be strictly increasing and continuous
on [a,b]. Let [¢,d] = f([a,b]). Let us define the inverse function g : [¢,d] — [a, b] by setting
g(y) = x if and only if f(z) = y. Then g is strictly increasing and continuous on [c, d].

Exponential and log functions.

For any (real or complex) = we define E(z) =14+ x+ ‘”‘32—? + g—? + ..., the sum of an absolutely
convergent series. It follows from this definition that E(z+y) = E(z)E(y). Setting e = E(1),
it was shown in M1P1 that E(z) = €® for rational z. For irrational x, we can define e” to be
equal to E(x).

(2.5) We have the following further properties of the exponential function E(z):

(i) E(z) > 0 for all z € R;

(ii) E(z) is strictly increasing on R;

(iii) E(x) is continuous at every z € R;

(iv) E takes every positive value exactly once.

By IFT (2.4) we can define the inverse function log by setting z = logy if and only if
E(z) =y, for all positive y > 0, and obtain

(2.6) The function log is strictly increasing and continuous at all y > 0.

Using this, for any a > 0 we can define a” by a* = E(zloga). Then it is easy to see that
a®"Y = a®a¥, which implies that a® agrees with the usual definition of a power for rational x
(as in M1P1). From (2.5) and (6.9)(M1P1) we immediately get

(2.7) For any a > 0, the function a” is continuous everywhere.



Chapter 3: Differentiation.

Suppose f is defined on some open interval containing a point a. We say f is differentiable
at a if LI pag o limit as b — 0, and we call this limit f/(a) = limy,_,o Ze=1@),
We say f is left (right) differentiable at a if the corresponding limits below exist and we set
#(a) = limy_yg f(a+h) f(@) and (@) = limy, g f(a+hf)L fla)

We can note that although expressions under the limit signs are undefined for h = 0 (they
are of the form 0/0), we can still talk about limits of these expressions as h — 0, since we do

not have to look at what happens at h = 0 according to definition of limits (6.2)(M1P1).

Simple observation: Function f is differentiable at a if and only if it is both left and right
differentiable at a and f! (a) = f’ (a). In this case we also have f'(a) = f’ (a) = f’ (a).
The main fact relating differentiability and continuity is

(3.1) If f is differentiable at a, then f is continuous at a.
The converse is not true, as is shown by the function f(z) = |z| at zero.

Rules for differentiation. Suppose f and g are both differentiable at a. Then

(3.2) [+ gisdble at a, and (f + g)'(a) = f'(a) + ¢'(a).

3.3) (product rule) fg is d’ble at a, and (fg)'(a) = f'(a)g(a) + f(a)g'(a).

.4) if in addition g(a) # 0, then 1/g is d’ble at a, and (1/g)'(a) = —¢'(a)/g(a)?.

.5) (quotient rule) if in addition g(a) # 0, then f/g is d’ble at a, and (f/g)(a) =
a)g(a) — f(a)g'(a)]/g(a)?.

.6) (chain rule) Suppose g is d’ble at a and f is d’ble at g(a). Then f o g is d’ble at a, and
9)'(a) = f'(g(a))g'(a).

3.7) (inverse function) Suppose f : [a,b] — [c,d] is continuous and strictly increasing, with
inverse function ¢ : [¢,d] — [a,b]. Suppose f is d’ble at some point a € (a,b), and that
f'(a) # 0. Then g is d’ble at 8 = f(«), and ¢'(8) = 1/f'(«a).

In fact, the formula for the derivative of the inverse function simply follows from its differ-
entiability and the chain rule. Indeed, differentiating the equality g(f(z)) = x at «, by the
chain rule we get ¢'(f(a))f'(«) = 1, which implies ¢’(8) = 1/f'(«) in (3.7). This argument
also shows that condition f’(a) # 0 is necessary for the differentiability of g at f(a).
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Chapter 4: Functions differentiable on an interval.

As before, we say that f has a (local) mazimum at a, if there is a § > 0 such that |[x —a| < §
implies f(z) < f(a); and f has a (local) minimum at a, if there is a § > 0 such that
|z —a| < ¢ implies f(z) > f(a). In what follows, we will always mean local maximum and
local minimum.

(4.1) (derivative at local extrema is zero) Suppose f is differentiable at a, and that f has a
(local) maximum or a minimum at a. Then f/(a) = 0.

For the following theorems (4.2)-(4.4), suppose f and g are continuous on a closed interval

[a,b], and differentiable on its interior (a,b). Then

(4.2) (Rolle’s Theorem) Suppose in addition that f(a) = f(b). Then f’(¢) = 0 for some
¢ € (a,b).

(4.3) (MVT: Mean Value Theorem) There is a point ¢ € (a,b) such that f’(c) 75( ).

(4.4) (Cauchy’s MVT) There is a point ¢ € (a,b) such that (g(b) — g(a))f'(c) = (f(b) —

f(a))g'(c).

Applications of the MVT:

(4.5) Suppose f'(z) =0 for all z € (a,b). Then f is constant on [a, b].




(4.6) Suppose f'(z) > 0 for all z € (a,b). Then f is strictly increasing on [a, b].
(4.7) (Test for maz/min) Suppose that at some point ¢, f’(¢) = 0 and f”(c) exists. Then (i)
if f”(¢) > 0, f has a minimum at ¢; (ii) if f”(¢) < 0, f has a maximum at c.

When calculating limits, it is often useful to use the following
(4.8) (L’Hopital’s rule, one-sided version) Suppose that

(i) f and g are both d’ble on I = (a,a + J);

(ii) ( ) — 0 and g(z) — 0 as x — a+;

(ii) ¢' # 0 on I;

(iv) fl(x)/g' (z) = lasx — a+.

Then f(x)/g(x) > lasz — a+.

Of course, there is a similar theorem for limits as * — a—, and hence also for two-sided limits
as T — a.

Taylor series: By f*)(a) we will denote the k-th order derivative of f at a. If f is a function
such that f(*) (a) exist for all k£ € N, then Zk>0 i )(a) h¥ is called the Taylor series of f at a.
Let P,_1 be the sum of the first n terms of the Taylor series, i.e. P,_1(h) = Z:é %(a)hk,

and let us define Ry, (h) by the equality f(a+h) = P,—1(h)+ Ry (h). The we have the following
estimates for the remainder R,,:

(4.9) (Taylor’s theorem with Lagrange’s form of the remainder) Fix n > 1 and let A > 0.
Suppose that f, f’, ..., f(*~1 are all continuous on [a, a+ h] and that f) exists on (a,a+h).
Then R, (h) = 7 f™ (a + 0h), for some 0 € (0,1).

(4.10) (Most useful form of Taylor’s theorem) Suppose f is n times d’ble on some open
interval I containing a. Then if a + h € I, we have R,(h) = %f(”)(a + 6h), for some
6 € (0,1).

Chapter 5: Riemann integration.

A partition A of [a,b] is (by definition) any finite subset of [a, b] that contains a and b. If it
has n + 1 points, we write it in the form A = {a =z < 21 < ... < Zp—1 < z, = b}.
Let f be a bounded function on [a,b]. Given a partition A, let M; = sup,c(y, | a,] f(®)
and m; = infyc,, | . f(z). We define upper and lower Riemann sums by S(f,A) =
Yoy Mi(z;—xi—1) and s(f,A) = >, mi(z;—x;—1). Let us now define upper and lower Rie-
mann integrals J(f) = inf{S(f, A) : over all finite partitions A} and j(f) = sup{s(f,A) :
over all finite partitions A}. Function f is called Riemann integrable over [a,b] if j(f) =
J(f). In that case we define its Riemann integral by f:f = j(f) = J(f). We have the
following properties:

(5.1) Let M = sup{f(z): z € [a,b]}, m = inf{f(z) : € [a,b]}. Then m(b—a) < s(f,A) <
S(f,A) < M(b—a).

(5.2) j(f) < J(f) for any bounded function f on [a,b].

(6.3) If A’ = AU {c} is obtained from A by adding one more subdivision point ¢, then
S(f.A') < S(f, A) and (£, ) < s(f, A).

(5.4) Let A’ be any subdivision of A (i.e. A’ is obtained from A by adding more points,
which also means A C A’). Then S(f,A") < S(f,A) and s(f,A) < s(f,A").

(5.5) Let Ay and Ag be any two partitions of [a,b]. Then s(f, A1) < S(f, As).

The following are useful criteria for Riemann integrability:

(5.6) (e-criterion for Riemann integrability) Suppose that for any e > 0 there is a partition
A of [a,b] such that S(f,A) — s(f,A) < e. Then f is Riemann integrable over [a, b].

(5.7) Let f be monotonic on [a,b]. Then f is Riemann integrable over [a, b].



To prove that all continuous functions are Riemann integrable, we need
(5.8) Let f be continuous on [a,b]. Then f is uniformly continuous on |a,b], i.e. given
any € > 0, there is a § > 0 such that for any z,y € [a,b], condition |z — y| < J implies

|f(z) = fy)l <e

(5.9) Let f be continuous on [a,b]. Then f is Riemann integrable over [a, b].

We have the following further properties of the Riemann integral:

(5.10) (linearity of the integral) Let o, 8 € R and suppose f and g are both Riemann integrable
over [a,b]. Then so is af + (B¢, and f;(af + Bg) = af(ff —|—ﬁfabg.

(5.11) Let f and g be any bounded functions on [a,b]. Then J(f + g) < J(f) + J(g) and
i(f +9) > 3(f) +i(9):

(5.12) Let a < ¢ < b and suppose that f is continuous on [a,b]. Then fabf = [°f+ fcb 1,
where all integrals make sense.

(5.13) (preparation for FTC) Let f be continuous on [a,b]. Then f is Riemann integrable
over [a, z] for all z € [a, b], so it makes sense to define ¢(z) = [ f (by convention, ¢(a) = 0).
Then ¢ is d’ble on (a,b), continuous on [a,b], and ¢'(c) = f(c) for all ¢ € (a,b).

(5.14) (FTC: Fundamental Theorem of Calculus) Suppose f is continuous on [a, b], and let F’
be any function that is continuous on [a, b], differentiable on (a, b) and such that F'(z) = f(x)
for all z € (a,b). Then [° f = F(b) — F(a).



