

M2P1 Analysis II (2005) Dr M Ruzhansky

List of definitions, statements and examples.

Chapter 1: Limits and continuity.

This chapter is mostly the revision of Chapter 6 of M1P1. First we consider functions $f(x)$ where x and $f(x)$ are real.

(6.1)(M1P1) (*continuity*) Suppose f is a function defined for all x in some interval containing a point a . Then we say that f is *continuous at a* if given any $\epsilon > 0$, there is a $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) - f(a)| < \epsilon$.

(6.2)(M1P1) (*limits*) Suppose f is a function defined for all x in some interval containing a point a , except (perhaps) at a itself. Then " $f(x) \rightarrow l$ as $x \rightarrow a$ " means that given any $\epsilon > 0$, there is a $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - l| < \epsilon$.

Here and in what follows l should be a finite number. Note that the main and only difference between these two definitions is that when we take a limit of a function f at a point a , we do not require $f(a)$ to be defined. That is why we have to require $0 < |x - a|$ to insure that $x \neq a$, and to replace $f(a)$ by a real number l since $f(a)$ may be no longer defined. For the limit of f at a , the values of f around a , not at a , are important!

(6.3)(M1P1) Revise examples of continuous functions and limits.

Similarly, we can define *right and left limits*. So, " $f(x) \rightarrow l$ as $x \rightarrow a+$ " means $\forall \epsilon > 0 \exists \delta > 0$ such that $a < x < a + \delta$ implies $|f(x) - l| < \epsilon$, and " $f(x) \rightarrow l$ as $x \rightarrow a-$ " means $\forall \epsilon > 0 \exists \delta > 0$ such that $a - \delta < x < a$ implies $|f(x) - l| < \epsilon$, respectively.

Relation between limits and continuity: " f is continuous (left cts, right cts) at a " means that

(i) $f(a)$ is defined, and (ii) $f(x) \rightarrow f(a)$ as $x \rightarrow a$ ($x \rightarrow a-$, $x \rightarrow a+$, resp.)

Simple facts:

- (i) $f(x) \rightarrow l$ as $x \rightarrow a$ if and only if $f(x) \rightarrow l$ as $x \rightarrow a-$ and $f(x) \rightarrow l$ as $x \rightarrow a+$.
- (ii) f is continuous at a if and only if f is left and right continuous at a .

(6.4)(M1P1) (*limits in terms of sequences*) The following statements are equivalent:

- (a) $f(x) \rightarrow l$ as $x \rightarrow a$.
- (b) $f(x_n) \rightarrow l$ for every sequence x_n such that (i) $x_n \rightarrow a$, and (ii) $x_n \neq a$ for all n .

This theorem is useful in showing that limits do not exist. For example, if $f(x) = 1$ for rational x and $f(x) = 0$ otherwise, we can use part (b) to show that f has no limit at any point. Using the **relation between limits and continuity**, we get:

(6.5)(M1P1) (*continuity in terms of sequences*) The following statements are equivalent:

- (a) f is continuous at a .
- (b) $f(x_n) \rightarrow f(a)$ for every sequence x_n such that $x_n \rightarrow a$.

(6.6)(M1P1) (*basic rules for limits*) Suppose $f(x) \rightarrow l$ and $g(x) \rightarrow m$ as $x \rightarrow a$. Then

- (i) $cf(x) \rightarrow cl$ for any $c \in \mathbb{R}$;
- (ii) $f(x) + g(x) \rightarrow l + m$ as $x \rightarrow a$;
- (iii) $f(x)g(x) \rightarrow lm$ as $x \rightarrow a$;
- (iv) $f(x)/g(x) \rightarrow l/m$ as $x \rightarrow a$, provided $m \neq 0$;
- (v) $|f(x)| \rightarrow |l|$ as $x \rightarrow a$.

This theorem can be proved either directly using ϵ and δ , or by using characterisation (6.4)(M1P1) and corresponding theorems for sequences from M1P1. These rules can be applied to continuous functions:

(6.7)(M1P1) (*basic rules for continuity*) Suppose f and g are both continuous at a . Then

- (i) cf is continuous at a for any $c \in \mathbb{R}$;
- (ii) $f + g$ is continuous at a ;
- (iii) fg is continuous at a ;
- (iv) f/g is continuous at a , provided $g(a) \neq 0$;
- (v) $|f|$ is continuous at a .

(6.8)(M1P1) (*limit of compositions*) Suppose $g(x) \rightarrow l$ as $x \rightarrow a$ and f is continuous at a . Then $f(g(x)) \rightarrow f(l)$ as $x \rightarrow a$.

(6.9)(M1P1) (*continuity of compositions*) If g is continuous at a and f is continuous at $g(a)$, then $f \circ g$ is continuous at a . Here, as usual, $(f \circ g)(x) = f(g(x))$.

Remarks:

- (1) everything is valid with no change if x or $f(x)$ are complex.
- (2) everything is valid for one-sided limits as well.

All of the theorems above can be also extended to higher dimensions. The only thing to change is the notion of the distance! Thus, for points $x, y \in \mathbb{R}^n$, we define

$$|x - y| = \sqrt{(x_1 - y_1)^2 + \cdots + (x_n - y_n)^2},$$

where $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$. Then we can simply repeat definitions from M1P1 using this new distance where necessary.

(1.0) Let x_n be a sequence of points in \mathbb{R}^n and let $x \in \mathbb{R}^n$. We will say that $x_n \rightarrow x$ as $n \rightarrow \infty$ if $|x_n - x| \rightarrow 0$ as $n \rightarrow \infty$.

Here $|x_n - x|$ is a sequence of real numbers, so we already know from M1P1 how to understand its convergence to zero. We will also define a ball $B_\delta(a)$ with radius δ centred at a by $B_\delta(a) = \{x \in \mathbb{R}^n : |x - a| < \delta\}$. Balls will now replace the intervals! We will consider real valued functions, i.e. $f(x)$ is real though x is in \mathbb{R}^n . With this in mind, definitions (6.1) and (6.2) above become:

(1.1) (*continuity in \mathbb{R}^n*) Suppose f is a function defined for all x in some ball containing a point a . Then we say that f is *continuous at a* if given any $\epsilon > 0$, there is a $\delta > 0$ such that $|x - a| < \delta$ implies $|f(x) - f(a)| < \epsilon$.

(1.2) (*limits in \mathbb{R}^n*) Suppose f is a function defined for all x in some ball containing a point a , except (perhaps) at a itself. Then " $f(x) \rightarrow l$ as $x \rightarrow a$ " means that given any $\epsilon > 0$, there is a $\delta > 0$ such that $0 < |x - a| < \delta$ implies $|f(x) - l| < \epsilon$.

(1.3) (*Main Theorem of Chapter 1*) Theorems (6.4)–(6.9) (M1P1) remain valid if we replace definitions (6.1) and (6.2)(M1P1) by definitions (1.1) and (1.2), respectively.

Remark: everything is still valid for functions $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ or $f : \mathbb{C}^n \rightarrow \mathbb{C}^n$ if we use the n -dimensional distance for values of f as well.

Chapter 2: Continuity on closed intervals.

In the next chapters we will work in one dimension and will assume that x and $f(x)$ are real. When talking about intervals here, we always mean bounded intervals, i.e. boundaries a and b are finite real numbers, satisfying $-\infty < a \leq b < +\infty$. As usual, we define open and closed intervals by $(a, b) = \{x \in \mathbb{R} : a < x < b\}$ and $[a, b] = \{x \in \mathbb{R} : a \leq x \leq b\}$.

Main definition: f is said to be *continuous on a closed interval* $[a, b]$ if it is continuous at all points of (a, b) , right continuous at a , and left continuous at b . For intervals $(a, b]$ or $[a, b)$ definitions are similar.

Trivial observation: if f is continuous on an interval (α, β) which contains a subinterval $[a, b]$, then f is continuous on $[a, b]$.

Examples: polynomials are continuous on any $[a, b]$, rational functions f/g are continuous on any $[a, b]$ provided $g(x) \neq 0$ for all $x \in [a, b]$.

Theorems in Chapter 6 of M1P1 and in our Chapter 1 have counterparts for one-sided limits.

For example, the counterpart of Theorem 6.4 (M1P1) is:

(2.0) Function f is right continuous at a if and only if $f(x_n) \rightarrow f(a)$ for every sequence x_n such that (i) $x_n \rightarrow a$, and (ii) $x_n \geq a$ for all n . (a similar statement holds for left continuous functions)

We have the following important properties of **continuous functions on closed intervals**:

(2.1) (*IVT: Intermediate Value Theorem*) Let f be continuous on a closed interval $[a, b]$. Then f has the intermediate value property (IVP) on $[a, b]$, which means that if l is any number between $f(a)$ and $f(b)$, then there is some $c \in [a, b]$ such that $f(c) = l$.

Note that continuous functions on non-closed intervals do not have to satisfy IVP and functions having IVP on closed intervals are not necessarily continuous. So these two notions are not at all equivalent.

(2.2) (*boundedness theorem*) Let f be continuous on a closed interval $[a, b]$. Then f is bounded (both above and below) on $[a, b]$, i.e. there is a number M (m) such that $f(x) \leq M$ ($f(x) \geq m$), for all $x \in [a, b]$, resp.

(2.3) (*EVT: Extreme Value Theorem*) Let f be continuous on a closed interval $[a, b]$. Then there is some $c \in [a, b]$ such that $f(x) \leq f(c)$ for all $x \in [a, b]$. Also, there is some $c' \in [a, b]$ such that $f(x) \geq f(c')$ for all $x \in [a, b]$.

In these cases we say $f(c) = \max_{[a, b]} f$, $f(c') = \min_{[a, b]} f$, are maximum and minimum of f on $[a, b]$. Then we also say that f attains its maximum and minimum at c and c' , respectively.

(2.4) (*IFT: Inverse Function Theorem*) Let $f : [a, b] \rightarrow \mathbb{R}$ be strictly increasing and continuous on $[a, b]$. Let $[c, d] = f([a, b])$. Let us define the inverse function $g : [c, d] \rightarrow [a, b]$ by setting $g(y) = x$ if and only if $f(x) = y$. Then g is strictly increasing and continuous on $[c, d]$.

Exponential and log functions.

For any (real or complex) x we define $E(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$, the sum of an absolutely convergent series. It follows from this definition that $E(x+y) = E(x)E(y)$. Setting $e = E(1)$, it was shown in M1P1 that $E(x) = e^x$ for rational x . For irrational x , we can define e^x to be equal to $E(x)$.

(2.5) We have the following further properties of the exponential function $E(x)$:

- (i) $E(x) > 0$ for all $x \in \mathbb{R}$;
- (ii) $E(x)$ is strictly increasing on \mathbb{R} ;
- (iii) $E(x)$ is continuous at every $x \in \mathbb{R}$;
- (iv) E takes every positive value exactly once.

By IFT (2.4) we can define the inverse function \log by setting $x = \log y$ if and only if $E(x) = y$, for all positive $y > 0$, and obtain

(2.6) The function \log is strictly increasing and continuous at all $y > 0$.

Using this, for any $a > 0$ we can define a^x by $a^x = E(x \log a)$. Then it is easy to see that $a^{x+y} = a^x a^y$, which implies that a^x agrees with the usual definition of a power for rational x (as in M1P1). From (2.5) and (6.9)(M1P1) we immediately get

(2.7) For any $a > 0$, the function a^x is continuous everywhere.

Chapter 3: Differentiation.

Suppose f is defined on some open interval containing a point a . We say f is *differentiable at a* if $\frac{f(a+h)-f(a)}{h}$ has a limit as $h \rightarrow 0$, and we call this limit $f'(a) = \lim_{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$. We say f is *left (right) differentiable at a* if the corresponding limits below exist and we set $f'_-(a) = \lim_{h \rightarrow 0-} \frac{f(a+h)-f(a)}{h}$ and $f'_+(a) = \lim_{h \rightarrow 0+} \frac{f(a+h)-f(a)}{h}$.

We can note that although expressions under the limit signs are undefined for $h = 0$ (they are of the form $0/0$), we can still talk about limits of these expressions as $h \rightarrow 0$, since we do not have to look at what happens at $h = 0$ according to definition of limits (6.2)(M1P1).

Simple observation: Function f is differentiable at a if and only if it is both left and right differentiable at a and $f'_+(a) = f'_-(a)$. In this case we also have $f'(a) = f'_+(a) = f'_-(a)$.

The main fact relating differentiability and continuity is

(3.1) If f is differentiable at a , then f is continuous at a .

The converse is not true, as is shown by the function $f(x) = |x|$ at zero.

Rules for differentiation. Suppose f and g are both differentiable at a . Then

(3.2) $f + g$ is d'ble at a , and $(f + g)'(a) = f'(a) + g'(a)$.

(3.3) (*product rule*) fg is d'ble at a , and $(fg)'(a) = f'(a)g(a) + f(a)g'(a)$.

(3.4) if in addition $g(a) \neq 0$, then $1/g$ is d'ble at a , and $(1/g)'(a) = -g'(a)/g(a)^2$.

(3.5) (*quotient rule*) if in addition $g(a) \neq 0$, then f/g is d'ble at a , and $(f/g)'(a) = [f'(a)g(a) - f(a)g'(a)]/g(a)^2$.

(3.6) (*chain rule*) Suppose g is d'ble at a and f is d'ble at $g(a)$. Then $f \circ g$ is d'ble at a , and $(f \circ g)'(a) = f'(g(a))g'(a)$.

(3.7) (*inverse function*) Suppose $f : [a, b] \rightarrow [c, d]$ is continuous and strictly increasing, with inverse function $g : [c, d] \rightarrow [a, b]$. Suppose f is d'ble at some point $\alpha \in (a, b)$, and that $f'(\alpha) \neq 0$. Then g is d'ble at $\beta = f(\alpha)$, and $g'(\beta) = 1/f'(\alpha)$.

In fact, the formula for the derivative of the inverse function simply follows from its differentiability and the chain rule. Indeed, differentiating the equality $g(f(x)) = x$ at α , by the chain rule we get $g'(f(\alpha))f'(\alpha) = 1$, which implies $g'(\beta) = 1/f'(\alpha)$ in (3.7). This argument also shows that condition $f'(\alpha) \neq 0$ is necessary for the differentiability of g at $f(\alpha)$.

Chapter 4: Functions differentiable on an interval.

As before, we say that f has a *(local) maximum* at a , if there is a $\delta > 0$ such that $|x - a| < \delta$ implies $f(x) \leq f(a)$; and f has a *(local) minimum* at a , if there is a $\delta > 0$ such that $|x - a| < \delta$ implies $f(x) \geq f(a)$. In what follows, we will always mean local maximum and local minimum.

(4.1) (*derivative at local extrema is zero*) Suppose f is differentiable at a , and that f has a (local) maximum or a minimum at a . Then $f'(a) = 0$.

For the following theorems (4.2)-(4.4), suppose f and g are continuous on a closed interval $[a, b]$, and differentiable on its interior (a, b) . Then

(4.2) (*Rolle's Theorem*) Suppose in addition that $f(a) = f(b)$. Then $f'(c) = 0$ for some $c \in (a, b)$.

(4.3) (*MVT: Mean Value Theorem*) There is a point $c \in (a, b)$ such that $f'(c) = \frac{f(b)-f(a)}{b-a}$.

(4.4) (*Cauchy's MVT*) There is a point $c \in (a, b)$ such that $(g(b) - g(a))f'(c) = (f(b) - f(a))g'(c)$.

Applications of the MVT:

(4.5) Suppose $f'(x) = 0$ for all $x \in (a, b)$. Then f is constant on $[a, b]$.

(4.6) Suppose $f'(x) > 0$ for all $x \in (a, b)$. Then f is strictly increasing on $[a, b]$.

(4.7) (*Test for max/min*) Suppose that at some point c , $f'(c) = 0$ and $f''(c)$ exists. Then (i) if $f''(c) > 0$, f has a minimum at c ; (ii) if $f''(c) < 0$, f has a maximum at c .

When calculating limits, it is often useful to use the following

(4.8) (*L'Hôpital's rule, one-sided version*) Suppose that

- (i) f and g are both d'ble on $I = (a, a + \delta)$;
- (ii) $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a +$;
- (iii) $g' \neq 0$ on I ;
- (iv) $f'(x)/g'(x) \rightarrow l$ as $x \rightarrow a +$.

Then $f(x)/g(x) \rightarrow l$ as $x \rightarrow a +$.

Of course, there is a similar theorem for limits as $x \rightarrow a -$, and hence also for two-sided limits as $x \rightarrow a$.

Taylor series: By $f^{(k)}(a)$ we will denote the k -th order derivative of f at a . If f is a function such that $f^{(k)}(a)$ exist for all $k \in \mathbb{N}$, then $\sum_{k \geq 0} \frac{f^{(k)}(a)}{k!} h^k$ is called the *Taylor series of f at a* .

Let P_{n-1} be the sum of the first n terms of the Taylor series, i.e. $P_{n-1}(h) = \sum_{k=0}^{n-1} \frac{f^{(k)}(a)}{k!} h^k$, and let us define $R_n(h)$ by the equality $f(a+h) = P_{n-1}(h) + R_n(h)$. Then we have the following estimates for the remainder R_n :

(4.9) (*Taylor's theorem with Lagrange's form of the remainder*) Fix $n \geq 1$ and let $h > 0$. Suppose that $f, f', \dots, f^{(n-1)}$ are all continuous on $[a, a+h]$ and that $f^{(n)}$ exists on $(a, a+h)$. Then $R_n(h) = \frac{h^n}{n!} f^{(n)}(a + \theta h)$, for some $\theta \in (0, 1)$.

(4.10) (*Most useful form of Taylor's theorem*) Suppose f is n times d'ble on some open interval I containing a . Then if $a + h \in I$, we have $R_n(h) = \frac{h^n}{n!} f^{(n)}(a + \theta h)$, for some $\theta \in (0, 1)$.

Chapter 5: Riemann integration.

A **partition** Δ of $[a, b]$ is (by definition) any finite subset of $[a, b]$ that contains a and b . If it has $n + 1$ points, we write it in the form $\Delta = \{a = x_0 < x_1 < \dots < x_{n-1} < x_n = b\}$. Let f be a **bounded function** on $[a, b]$. Given a partition Δ , let $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$ and $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$. We define *upper and lower Riemann sums* by $S(f, \Delta) = \sum_{i=1}^n M_i(x_i - x_{i-1})$ and $s(f, \Delta) = \sum_{i=1}^n m_i(x_i - x_{i-1})$. Let us now define *upper and lower Riemann integrals* $J(f) = \inf\{S(f, \Delta) : \text{over all finite partitions } \Delta\}$ and $j(f) = \sup\{s(f, \Delta) : \text{over all finite partitions } \Delta\}$. Function f is called *Riemann integrable over $[a, b]$* if $j(f) = J(f)$. In that case we define its *Riemann integral* by $\int_a^b f = j(f) = J(f)$. We have the following properties:

(5.1) Let $M = \sup\{f(x) : x \in [a, b]\}$, $m = \inf\{f(x) : x \in [a, b]\}$. Then $m(b - a) \leq s(f, \Delta) \leq S(f, \Delta) \leq M(b - a)$.

(5.2) $j(f) \leq J(f)$ for any bounded function f on $[a, b]$.

(5.3) If $\Delta' = \Delta \cup \{c\}$ is obtained from Δ by adding one more subdivision point c , then $S(f, \Delta') \leq S(f, \Delta)$ and $s(f, \Delta) \leq s(f, \Delta')$.

(5.4) Let Δ' be any subdivision of Δ (i.e. Δ' is obtained from Δ by adding more points, which also means $\Delta \subset \Delta'$). Then $S(f, \Delta') \leq S(f, \Delta)$ and $s(f, \Delta) \leq s(f, \Delta')$.

(5.5) Let Δ_1 and Δ_2 be any two partitions of $[a, b]$. Then $s(f, \Delta_1) \leq S(f, \Delta_2)$.

The following are **useful criteria for Riemann integrability**:

(5.6) (*ϵ -criterion for Riemann integrability*) Suppose that for any $\epsilon > 0$ there is a partition Δ of $[a, b]$ such that $S(f, \Delta) - s(f, \Delta) < \epsilon$. Then f is Riemann integrable over $[a, b]$.

(5.7) Let f be monotonic on $[a, b]$. Then f is Riemann integrable over $[a, b]$.

To prove that all continuous functions are Riemann integrable, we need

(5.8) Let f be continuous on $[a, b]$. Then f is *uniformly continuous on $[a, b]$* , i.e. given any $\epsilon > 0$, there is a $\delta > 0$ such that for any $x, y \in [a, b]$, condition $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$.

(5.9) Let f be continuous on $[a, b]$. Then f is Riemann integrable over $[a, b]$.

We have the following further **properties of the Riemann integral**:

(5.10) (*linearity of the integral*) Let $\alpha, \beta \in \mathbb{R}$ and suppose f and g are both Riemann integrable over $[a, b]$. Then so is $\alpha f + \beta g$, and $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$.

(5.11) Let f and g be any bounded functions on $[a, b]$. Then $J(f + g) \leq J(f) + J(g)$ and $j(f + g) \geq j(f) + j(g)$.

(5.12) Let $a < c < b$ and suppose that f is continuous on $[a, b]$. Then $\int_a^b f = \int_a^c f + \int_c^b f$, where all integrals make sense.

(5.13) (*preparation for FTC*) Let f be continuous on $[a, b]$. Then f is Riemann integrable over $[a, x]$ for all $x \in [a, b]$, so it makes sense to define $\phi(x) = \int_a^x f$ (by convention, $\phi(a) = 0$). Then ϕ is d'ble on (a, b) , continuous on $[a, b]$, and $\phi'(c) = f(c)$ for all $c \in (a, b)$.

(5.14) (*FTC: Fundamental Theorem of Calculus*) Suppose f is continuous on $[a, b]$, and let F be any function that is continuous on $[a, b]$, differentiable on (a, b) and such that $F'(x) = f(x)$ for all $x \in (a, b)$. Then $\int_a^b f = F(b) - F(a)$.