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1 Analysis on the real line

1.1 Chapter: Functions continuous on a closed interval
1.1.1 Intermediate Value Theorem (IVT)

Theorem (Intermediate Value Theorem). Let f be continuous on a closed interval
la,b]. Let ¢ be between f(a) and f(b). Then there is some point ¢ € [a,b] such that

fle) =¢.
The following is an example of an application of the IVT.

Theorem. Let f :[0,1] — [0,1] be continuous. Then f has a fixed point, i.e. there is
some point ¢ € [0, 1] such that f(c) = c.

Proof. First we observe that clearly f(c) = ¢ means f(c) — ¢ = 0. This motivates one
to introduce function g(z) = f(z) — . We immediately see that ¢ is continuous (on
[0,1]) as the difference of two continuous functions. We also have g(0) = f(0) > 0 and
g(1) = f(1) — 1 < 0 because of the assumption that 0 < f(z) <1 for all z € [0, 1]. But
now the IVT assures us that there is some ¢ € [0,1] such that g(c) = 0, i.e. we have
f(c) = ¢ as required.

1.1.2 Continuous functions are bounded

Let I be a set in R. We say that
f is bounded on I (bounded above, bounded below)

if the set {f(z) : © € I} of values of f on I is bounded (bounded above, bounded below,
resp.) in R. In other words, f is bounded above (or below) if there is some finite number
M < oo (or m > —o0) such that f(x) < M (or f(z) > m, resp.) for all x € I. So, f is
bounded on [ if it is bounded both above and below on I. We will be most interested
in I being an open or a closed interval.

Examples.

(1) Function f(x) = z? is bounded on I = (—1,1). Indeed, we have 0 < f(x) < 1 for all
z el

(2) Function f(xz) = 1/z on I = (0,1) is bounded below but not above. Indeed, the



image of I under f is f(I) = (1,00), so f on I is bounded below (e.g. by 1) but not
above.
(3) Function f(z) =tanz on I = (—x/2,7/2) is bounded neither above nor below on I.
Indeed, we can easily see that f(I) = (—o0,0).

Thus, we may have all possibilities of functions being bounded or unbounded on open
intervals. However, this changes completely if the interval I is closed.

Theorem 2.2. Let f be a continuous function on a closed interval [a,b]. Then f is
bounded on [a,b].

Proof. We need to show that f is bounded both above and below on [a, b]. But in fact
it is sufficient to only show that f is bounded above because the boundedness below then
follows by applying the boundedness above to —f instead of f.

We will argue by contradiction. Suppose f is not bounded above on [a,b]. This
means, in particular, that for every integer n € N there is some point x,, € [a,b] such
that f(x,) > n. The sequence z,, does not have to converge, but it is bounded (z,, € [a, D]
for all n), so we can apply the Bolzano—Weierstrass theorem from M1P1 which said that
every bounded sequence of real numbers has a convergent subsequence. Thus, x, has
some convergent subsequence, let us denote it by y,,. So, we have that {y,,}°°_; C
{z,}5°,, i.e. Yy, = x, for some n > m. In particular, this implies that

fym) = f(xn) >n>m, (1.1)

i.e. the sequence f(y,,) is unbounded. Let y be the limit of y,,’s. Since a < y,, < b
for all m € N, we also have a < y < b, i.e. y € [a,b] and hence f is continuous at y
(right or left continuous if y = a or y = b, respectively). Now, since y,, — y as m — 0o
and f is continuous at y, by Theorem 6.5 of M1P1 (see also Theorem 2.0 for one-sided
cases), we must also have f(y,,) — f(y) as m — oo. But a convergent sequence must be
bounded (see problem sheets of M1P1), which contradicts (1.1) that meant that f(y.,)
is an unbounded sequence. This completes the proof.

1.1.3 Supremum, infimum, maximum and minimum

In fact, continuous functions on closed intervals not only have to be bounded, but much
more is true: they also have to attain their bounds! This will be discussed in the next
section.

Let us recall some definitions first. Let f be a function on someset I C R, f : I — R.
The supremum of f on I, denoted by sup,.; f(x), is defined as

sup f(z) = the smallest M such that f(z) < M for all z € I.
xzel
If the function is bounded above, its supremum is finite. If not, there is not M as above,

and we set the supremum to be +oco. Similarly, the infimum of f on I, denoted by
inf,cr f(z), is defined as

ingf(a:) = the largest m such that f(z) > mfor all z € I.
e

Again, a bounded below function has a finite supremum. If f is not bounded below on
I, we set inf,¢; f(z) = —o0.



We will say that f attains its upper bound if there is some ¢ € I such that f(c) =
sup,c; f(x). In this case we will also write max,¢r f(x) for sup,.; f(x). Similarly, we
will say that f attains its lower bound if there is some d € I such that f(d) = inf,¢; f(x).
In this case we will also write min,¢; f(z) for inf,c; f(x). We will say that f(c) and f(d)
are the mazimum and minimum, respectively, of function f on the set I.

However, in many situations it is important to talk about local maximum or a local
minimum since often local properties of functions are the ones we are interested in. Thus,
we can say that f has a local mazximum at c if there is some interval containing ¢ such
that f attains its maximum in this interval in the point c¢. Note that the interval may be
very small so no information about the behaviour of f outside this interval is included
in the definition. To be rigorous, we define f(c) to be the local maximum of f if

there is § > 0 such that |z — ¢| < ¢ implies f(x) < f(c).
Similarly, we will say that f has a local minimum at d if

there is § > 0 such that |z — d| < ¢ implies f(z) > f(d).

1.1.4 Extreme Value Theorem (EVT)

The following (extreme value) theorem says that continuous functions on closed intervals
are not only bounded, but they also attain their upper and lower bounds.

Extreme Value Theorem. Let f be a continuous function on a closed interval [a,b].
Then f attains its upper and lower bounds on [a,b], i.e. there exist some points c,d € [a, b]
such that f(d) < f(z) < f(c) for all x € [a,b].

Clearly, this theorem implies Theorem 2.2. However, we will actually use Theorem 2.2
in the proof of the extreme value theorem. In the notation of 1.1.3, we may also write

f(c) = max f(x) and f(d) = min f(x).

xzel zel

Let us now prove the extreme value theorem.

Proof. It is enough to prove only half of the statement, for example the existence of
¢ € [a,b] such that f(z) < f(c) for all = € [a,b]. Indeed, if we apply this to —f instead
of f, we get that there exists some d € [a, b] such that —f(z) < —f(d) for all = € [a, b],
which would mean that f(d) < f(z) for all x € [a, ].

By Theorem 2.2 function f is bounded above on [a, b], i.e. the supremum of f on I
is finite. Let us denote M = sup,¢i,y f(z). If f(c) = M for some ¢ € [a,b], the proof
would be finished, so let us assume that f(z) < M for all z € [a,b]. Let us then consider

the function )

T M- f(x)

Clearly, g is well defined on [a,b] since f(z) < M for all z € [a,b]. Moreover, g is
continuous on [a,b] by Theorem 6.7 of M1P1 as a quotient of two continuous functions
with non-vanishing denominator. Now, by the definition of the supremum, M is the
smallest upper bound for f. This means that for any € > 0 the number M — € is not
the upper bound for f on [a,b], i.e. for every € > 0 there exists some x € [a,b] such

g9(z)
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that f(z) > M — e. But then it follows that g(x) > 1/¢, and hence g is not bounded
above on [a,b]. Indeed, for each n € N, taking ¢ = 1/n we would get that there is some
x € [a,b] with g(x) > n, implying that g is not bounded above. On the other hand, as
we have seen, ¢ is a continuous function on a closed interval [a, b], and hence it should
be bounded by Theorem 2.2. This contradiction shows that value M has to be attained
by f completing the proof of the extreme value theorem.

An alternative proof to the extreme value theorem is possible, similar to Theorem
2.2. Let us denote again M = sup,¢(,; f(z). Then there exists a sequence of points
T, € [a,b] such that f(z,) — M asn — oco. Indeed, for each n € N the number M —1/n
is not an upper bound for f on [a,b], hence there exists some z, € [a,b] such that
M —1/n < f(x,) < M. Passing to the limit we must have f(z,,) — M as n — oo. This
sequence {z,} C [a,b] is a bounded sequence and by the Bolzano—Weierstrass theorem
there exists a convergent subsequence which we denote by y,,. Thus, y,, — ¢ as m — oo,
for some ¢ € [a,b]. Since f is continuous at ¢, we must also have f(y,) — f(c) as
m — oo. On the other hand, f(y,,) — M as m — oo since {y,,} is a subsequence of
{z,}. It follows from the uniqueness of limits that f(c) = M and hence the supremum
of f on [a,b] is attained at the point c.

1.1.5 Inverse Function Theorem (IFT)

Let f : [a,b] — R be a strictly increasing continuous function. By definition, this means
that if z1, 2o € [a,b] and 1 < x9, then f(x1) < f(z2). Let ¢ = f(a) and d = f(b), so that
¢ < d. We claim first that f is a bijection from [a,b] to [c,d] (bijective means injective
and surjective). Clearly, f(x1) = f(z3) implies 1 = x2 (this means that f is injective).
Indeed, if either z1 < x5 or x5 < z7, then we would have f(z1) < f(x2) or f(z2) < f(z1),
resp., because f is strictly increasing. On the other hand, by the intermediate value
theorem f should take all values between ¢ and d (this means that f is surjective).
To summarise, we showed that a strictly increasing function f : [a,b] — [¢,d] with
¢ = f(a) and d = f(b) takes each value in [c, d] exactly once, so we may define its inverse
g : [c,d] — [a,b] by setting

x=g(y) if and only if y = f(z).

Inverse Function Theorem. Let f be a strictly increasing continuous function on a
closed interval [a,b], let ¢ = f(a),d = f(b), and let g : [c,d] — [a,b] be its inverse. Then
g is a strictly increasing continuous function on [c,d)].

Proof. Let us first show that g is strictly increasing. Let y1,y2 € [c,d] be such that
y1 < y2. Let 1 = g(y1) and 22 = g(y2), so that y; = f(z1) and yo = f(z2). We then
have either z; < x5, or ©; = x9, or £; > x5. Let us show that only the first case is
possible. Indeed, if z1 = x5 or 1 > zo, then f(z1) = f(xq) or f(z1) > f(x2), since
f is strictly increasing. But this contradicts the assumption y; < yo. Hence the only
possibility left is z; < x5, which shows that g is strictly increasing.

Let us now show that g is continuous on [c,d]. Let 5 € (¢,d) and let a = g(3),
so that 8 = f(a). Let us prove that ¢ is continuous at §. For every ¢ > 0 let us take
d =min{f(a+¢€) — 3,0 — f(a—€)}. Then one can readily see that |y — 8] < 0 implies

4



that f(a —€) <y < f(a+¢€), and hence also @ — € < g(y) < a + € because g is strictly
increasing. If we recall that a = g(3), we see that we proved that for each € > 0 there is
some d > 0 such that |y — 5| < § implies |g(y) — g(8)| < e. This means precisely that g
is continuous at 3. In the case of 5 being an endpoint of [¢, d|, a simple modification of
this argument for one-sided continuity implies that g is also continuous at the endpoints,
completing the proof of the inverse function theorem.

1.1.6 Derivative

We will first motivate the definition by some informal discussion of what we want to
have.

Informal definition. Imagine that we have drawn the graph of a function f on the
usual plane R2. The derivative of f at a has the meaning of the value of the slope of the
line which is tangent to the graph of f at the point (a, f(a)). However, we have to do
some extra work since (a, f(a)) is the only point that we know that lies on this line, and
to know the line precisely we need to know at least two points. The way to get around
this is to try to approximate the tangent line by lines that pass through two points on
the graph - the main point (a, f(a)) and the nearby points. Such points are all of the
form (x, f(x)) because they lie on the graph of f. So, we approximate the tangent line
to the graph of f at the point (a, f(a)) by lines through points (a, f(a)) and (z, f(x)) as
x approaches a. The slope of the line through two points (a, f(a)) and (z, f(z)) on the

place is given by f@)=1@) Q4 we arrive at the formal definition:

Formal definition. Let function f be defined on some open interval containing a point
a € R. We will say that f is differentiable at a if the expression W has a limit as
x — a. In this case we will call the limit f’(a), so that we have

f’(a) — lim f(l') B f((l)

T—a r — Q

We can note two things. First, at the point z = a the expression under the sign of the
limit is of the form %, which is undefined. However, we know that we do not look at the
value of the function at the limiting point when we take limits, so we only look at x # a,
where the expression under the limit makes perfect sense. Another thing is that it is
often convenient to emphasise the fact that we are around point a by writing
Clearly, z is close to a if and only if h is close to 0, and z — « if and only if h — 0.
We also note that obviously £ (12:5 (O (‘H’h});f @ Thus, the definition of the derivative
becomes

fla+h) - f(a)
h

f'(a) = lim

h—0

1.1.7 Chain rule

The chain rule is extremely useful when differentiating composed functions, like 23",
sin(z7), etc. The composition f o g of two functions f and g is defined as usual by

(f o g)(x) = flg(x)).



Theorem (Chain rule). Let g be differentiable at a and let f be differentiable at g(a).
Then f o g is also differentiable at a and we have

(fog)(a) = f'(g(a))g'(a)]  (the chain rule)

Proof. We have to show that

(fog)(x) = (fog)(a)

v — — f'(9(a))g'(a) as = — a.

For the proof we will introduce two auxiliary functions F' and A and will rewrite the
limit in terms of these functions. Having established basic properties of F' and A, we
will be able to prove the chain rule.
We set 3 = g(a) and define the function
Fly) - { f(y;:{?(ﬁ), .if y#8
f(8), it y=40.

Then by differentiability of f at 8 we can conclude that for y # § we have
TW=TD s po)-r ) ws s
so F'is continuous at 3. On the other hand we also note the formula

(y = B)F(y) = f(y) — £(B),

which holds for all y, including y = 3, when both sides are just zeros. Let us now define
another function

F(y) =

A(z) = g(x) — g(a).
We can easily observe that iixa) — ¢'(a) as * — a, simply by definition of A and

differentiability of g at a. For x # a, we can now rewrite the limit we need to investigate
as

(fo9)@) = (Fog)@) _ flo@) = F9(@) (0 ot of Afe)

r—a r—a

_ flg(a) + A(z)) — f(g(a)) (use 8 = g(a))

r—a

_ FB+ i(f)()z_ 1(B) (use formula for (y — 8)F(y))
_ A@)F;ﬁ_zA(m)) (use B+ A(z) = g() )

A(x)

r—a

= F(g(z))

Now, since g is continuous at a (it is differentiable at a, hence also continuous), and F
is continuous at 8 = g(a), we get that F o g is continuous at a and hence F(g(z)) —
F(g(a)) = F(B) = f'(B) = f'(g9(a)) as x — a. Moreover, we already know that % —
g'(a) as © — a. Therefore, we get

(fog)(z) —(fog)(a) _ F(g(a:))M — f'(g9(a))g'(a) as x — a,

x—a T —a
which shows that f o g is differentiable at a and proves the chain rule.
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1.1.8 Inverse Function Theorem (for derivatives)

Here we will derive the formula for the derivative of the inverse function. Similar to
the setting of 1.1.5, let f : [a,b] — [c,d] be a strictly increasing function, continuous
on [a,b], such that ¢ = f(a) and d = f(b). From 1.1.5 we know that its inverse g :
lc,d] — [a,b] is also strictly increasing and continuous. A natural question now is
whether the differentiability of f at some o € (a,b) implies the differentiability of g at
B = f(a) € (¢,d). Unfortunately, there is an obstruction to such a statement. Indeed,
supposing that this was true, let us differentiate the identity x = (g o f)(z) at @. Then
by the chain rule we get

1= (go f)(a) =g'(B)f (a).
However, this produces a contradiction if f'(«) = 0, since the right hand side is then

zero. Fortunately, this is the only obstruction for us to be able to differentiate the inverse
function.

Theorem. Let f : [a,b] — [c,d] be a strictly increasing function, continuous on [a,b],
such that ¢ = f(a) and d = f(b). Let g : [c,d] — [a,b] be the inverse of f. Let a € (a,b)
and suppose that f is differentiable at o and that f'(a) # 0. Then g is differentiable at

8= f(a) and
1

~ f(a)

Expressing everything in terms of 3, i.e. using that a = g(/3), we can write the formula
for the derivative as

9'(B)

L
f'(9(B))

We can also note that it is in fact enough to only show that ¢ is differentiable at (.
Indeed, in this case the required formula follows from the established above identity
1=1(g90f)(a) =d(B)f'(a). However, below we give the prove which also yields the
formula for the derivative.

Proof. We have to show that
9(y) — 9(B) 1

— as y — 0.
y—B f'(a)
Let us now rewrite this in terms of expressions involving f so that we could use that f
is differentiable at a. Let us define

q(B) =

Since g(f) = a, we can write this as g(y) = a+A(y), which means that y = f(a+A(y)).
Thus, we have to prove that
Aly) o1
fla+AQy) = fla) — f'(o)

where we used that 3 = f(a). We know that this is equivalent to proving that

fla+Ay)) — f(a)
Aly)

as y — f,

= f'(@) as y— 0,



provided that we never divided by zero. This is indeed the case if we notice that A(y) =0
if and only if y = 3 since g is strictly increasing. Also, f(a + A(y)) = f(«) if and only
if y = (B since f is strictly increasing. We also know that we need not look at the limit
point y = ( when taking limits, so all the expressions on the left hand sides are non-zero.
Now, let us introduce function

. f(i)—f(a)’ if z#a
(z) = { f(a), if z=a.

We immediately notice that F' is continuous at a because f is differentiable at « (similar
to the argument in the proof of the chain rule), and that we have the formula

(z —a)F(x) = f(z) - f(a)

for all z. In particular, taking z = a + A(y), we get

A(y)F(a+ Ay)) = fla+ Ay)) — f(o).
Now, for y # (3, we can write

fla+Ay) — fla) _ Aly)F(e+ Aly))
A(y) A(y)

where we divided by non-zero A(y). Since A is continuous at 3 (because g is continuous
at 3), A(B) = 0, and since F is continuous at « = a+ A(f3), we get that the composition
F(a+ A(y)) is continuous at (3. Hence its limit as y — (3 is equal to its value at § which
is F(a+ A(8)) = F(a) = f'(«), which is what was required to prove.

= Fa+ A(y)),

1.1.9 Derivative at an extremal point is zero

It turns out that the extremal points discussed in 1.1.3 have a useful characterisation in
terms of derivatives.

Theorem. Let f be differentiable at a and assume that f has a local mazximum or a
local minimum at a. Then f'(a) = 0.

Proof. Let us deal with the case when f has a maximum at a. For the case of a local
minimum we simply observe that f has a local maximum at a point if and only if —f
has a local minimum at the same point, so an application of the maximum case to —f
would immediately imply the statement for the minimum.

Thus, without loss of generality we may assume that f has a local maximum at a,
i.e. there is some § > 0 such that |x — a|] < § implies f(z) < f(a). We may restrict our
attention only to x with |z — a| < 0 since we do not need to look at other x to deal with
the derivative of f at a. So, if x < a, we must have f(z) — f(a) <0 and z —a < 0, and
hence £8=1@ > o Since f is differentiable at a, it is also left differentiable at a, so this

r—a

expression must have a limit as © — a—. By the sandwich theorem we get

f (a) = lim —f(x) ~ fla) > 0.

r—a— T —a



On the other hand, if x > a, we have f(z) — f(a) < 0 and x — a > 0, and hence

W < 0. So by the sandwich theorem again we get

) = tim F@ 1@

z—a+ r—a

<0.

Since f is differentiable at a, the values of left and right derivatives at a should coincide,
so we must have f'(a) = f’ (a) > 0 and f'(a) = f} (a) <0, which implies that f’'(a) = 0.

1.1.10 Rolle’s Theorem

Now we can argue that if we have a function which is differentiable in a closed interval, it
should attain a maximum (and a minimum) somewhere by the Extreme Value Theorem.
But then at such point the derivative should be equal to zero by Theorem 1.1.9. This
is the statement of the following theorem where we may actually assume slightly less,
namely that the function is differentiable only up to the end-points of our interval. At
the end-points it is sufficient to assume only continuity.

Rolle’s Theorem. Let f be continuous on [a,b] and differentiable on (a,b). Assume
that f(a) = f(b). Then there is some point ¢ € (a,b) such that f'(c) = 0.

Proof. The proof is essentially already given above before the formulation, we only have
to take care of what may happen at the end-points a and b. Thus, since f is continuous
on [a, b], the extreme value theorem EVT implies that there are some points ¢, ¢z € [a, b
such that f attains its maximum at ¢; and its minimum at cs.

If any of points ¢; or ¢, lies in the open interval (a,b), let us call this point ¢. Since
¢ € (a,b) and f is differentiable on (a,b), function f must be differentiable in particular
at c. But then by Theorem 1.1.9 we must have f'(c¢) = 0, which proves the theorem.

Now, if none of ¢, ¢y lie in (a,b), they must be the end-points. Since f(a) = f(b)
by assumption, we must have f(c;) = f(c2). But this means that the maximal and the
minimal values of f on [a,b] are the same. The only possibility is that f is constant on
[a,b]. In turn, this means that f’(¢) = 0 for all points ¢ € (a,b), proving the theorem
also in this case.

Remark. Note that in the formulation of Rolle’s theorem we have not assumed f to be
differentiable at the end-points a and b. This means, in particular, that we may apply
Rolle’s theorem to the function

1 .
rsin -, if x+#0,

f(‘”):{ 0, if =0,

on any interval [0, bg], with any by = ﬁ, for £ € N. Indeed, although f is not dif-
ferentiable at 0, it satisfies the assumptions on Rolle’s theorem on the closed interval
0, by] since f(0) = f(bx) = 0, and it is differentiable on (0, b;) and continuous on [0, b].
Thus, there must be some 0 < ¢ < by such that f’(¢) = 0. Applying this argument for
all £ € N, we can easily observe that for any positive b > 0, there are infinitely many
points ¢, € [0,b] where the derivative f’ vanishes. Of course, we could reach the same
conclusion by simply looking at the graph of f or by writing out explicit formulae for
all ¢x’s, but Rolle’s theorem provides a rigorous (although quite inefficient in this case)

proof for this observation.



1.1.11 Test for extremal points

It is very useful to be able to determine properties of function using properties of deriva-
tives. Indeed, in many situations it may be difficult to compare different values of a
function while it may be much easier to determine the sign of its first and higher order
derivatives.

Theorem. Let us assume that f'(a) =0 and that f is twice differentiable at a. Then
(i) if f"(a) > 0, then f has a local minimum at a;
(ii) if f"(a) <0, then f has a local mazimum at a;

(iii) of f"(a) =0, we can not make any conclusion.

Proof. (i) Since f is twice differentiable at a and f’(a) = 0, we have

/ / /
f"(a) = lim fz) = fla) = lim M

Tr—a Tr—Qa r—=a L — Q
Since f”(a) > 0, the expression under the limit must be positive for z close to a. In
other words, there is some § > 0 such that % >0 forall 0 < |z —a] <.

Now, if we are to the left of a, we have x — a < 0, and hence f'(z) < 0. Since f is
continuous on [a — 4, al, differentiable on (a — d, a), and f'(z) < 0 for all z € (a — 6, a), it
follows that f is strictly decreasing in [a — d, a]. In particular it means that f(a) < f(x)
foralla — 6 <z < a.

If we are to the right of a, we have x — a > 0, and hence f'(x) > 0. By an argument
similar to the one just given, we may conclude that f is strictly increasing on [a,a + §],
which means, in particular, that f(a) < f(z) for all a < z < a + §. Thus, we proved
that f(a) < f(z) for all a — § <z < a+ 4, which means that f has a local minimum at
a.

To prove (ii) we may notice that we can apply part (i) to — f instead of f to conclude
that —f has a local minimum at a. But this means that f has a local maximum at a.

Finally, to prove (iii) we just need to produce some examples. So, if we take fi(z) =
+x4, then f7(0) = 0, and f; has a local minimum at 0 while f_ has a local maximum.
In addition, function f(z) = x* also has f”(0) = 0, and neither minimum nor maximum
at 0.

2 Basics of analysis in R"

2.1 Continuity in R"
2.1.1 Properties of vectors in R"

Let z = (x1,...,x,) € R". Let also @ € R and y € R™. The space R" is a linear space
with operations

ar = (axy,...,ax,), TH+YyY=(T1+Y1,..., T+ Yn).
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It has the zero element 0 = (0,...,0) € R", the standard inner product z -y = z1y; +
...+ ZpYn, the norm (length)

lz| = Vo -z = /2?+ - + 22,

and the distance |zt —y| = \/(z — y) - (x — y). The norm satisfies the following properties
(i) |z| > 0 for all z € R™, and |z| = 0 is equivalent to x = 0;
(i) |azx| = |a| - |z| for all @ € R and = € R™;
(iii) the triangle inequality |z + y| < |z| + |y| holds for all z,y € R™.

The triangle inequality follows from the following
Cauchy—Schwartz inequality. Let x,y € R". Then |x - y| < |z||y|.
Proof. For € > 0, we have 0 < |z £ ey|? = |z]* + 2ex - y + €*|y|*>. This implies

||

+x-y < 2ie|:n|2 + £|y[?. Setting € = [l we obtain the required inequality, provided y # 0
(if y = 0 it is trivial).

An alternative proof may be given as follows. We can observe that the inequality
0 < |z+ey|? = |z|? +2ex -y + €?|y|* implies that the discriminant of the quadratic (in ¢)
polynomial on the right hand side must be non-positive, which means |z-y|?—|z|?|y|? < 0.

The Cauchy—Schwartz inequality implies the triangle inequality because we have
ety =(@+y) @ty =z-a+2 y+y-y
2

< |2+ 2zllyl + [y = (Jz] + [y])",
implying the triangle inequality.
Linear spaces with a norm are called normed linear spaces. So R™ is an example of a
normed linear space.
2.1.2 Continuity

Recall that all Theorems of Chapter 6 of M1P1 continue to hold for functions f : R® — R.
In particular, we (re)define the notion of continuity in the following way. We say that f
s continuous at a € R™ if

for every € > 0 there is some ¢ > 0 such that |z — a| < § implies | f(z) — f(a)| < e.
We will also say that f has limit £ at a, and will write lim, ., f(z) = ¢, if
for every € > 0 there is some § > 0 such that 0 < |z — a| < § implies |f(z) — | < e.

One has to pay more attention to continuity in R™ compared to R. In particular, conti-
nuity coordinate-wise is not equivalent to continuity for n > 2.

Theorem. Let f : R* — R be continuous at a € R". Let a = (ai,...,a,). Then
the function xy — f(a1,...,ax_1, Tk, Qxi1,- - .,ay) 1S continuous at ap € R, for all k =
1,...,n.
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Proof. Let € > 0. Since f is continuous at a, there is some § > 0 such that |z —a| < §
implies |f(z) — f(a)| < €. If we observe that |z — ax| < |x — al, we see that |z —a| < §
implies that |f(a1,...,ak_1, Tk, Ggs1,- -, 0n) — f(a)] < €, which means that the function
in the theorem is continuous at ay.

The converse to this theorem is not true. Let us consider an example. Let us define

g:R? - R by
=2, if (x,y) #(0,0),
— z +y
9(@) { 0 i (xy) = (0,0)

Let use denote g.(y) = g(z,y) and ¢¥(x) = g(z,y). These are functions obtained from
looking at g coordinate-wise. Then for all z,y € R, functions g,(-) and ¢¥(-) are contin-
uous. This can be formulated as saying that

—e

Statement 1. For any fixed z € R, the function y — g¢(z,y) is continuous on R, and
for any fixed y € R, the function = — g(x,y) is continuous on R.

Proof. Indeed, let us show, for example, that g, : R — R is continuous. If x = 0, we
have g,(y) = 0 for all y € R, so g, is continuous in this case. Let us now assume x # 0.
Then functions y — xy and y — 2 + y? are continuous, while the second function is
never zero. Hence their quotient is also continuous. Since this quotient is precisely g,,
we obtain the claim.

So, if we look at g coordinate-wise, it is everywhere continuous. On the other hand, we
have

Statement 2. Function ¢ is continuous at any point except (0,0). It is not continuous
at (0,0).

Proof. Let us show first that ¢ is not continuous at (z,y) = (0,0). Indeed, if g were
continuous at (0, 0), by the characterisation of continuity in terms of sequences, we would
have g(xy,yx) — ¢(0,0) = 0 for all sequences (z,yr) — (0,0). To get a contradiction,
let us pick a sequence for which this is not true. Let (zx,yx) = (1/k,1/k). Then
g(xk,yr) = 1/2 for all k, yielding the contradiction.

Finally, let us show that g is continuous at all other points. Indeed, if a € R? is such
that a # 0, both functions (z,y) — xy and (z,y) — x? + y? are continuous at a. The
second function is non-zero for (z,y) close to a, hence their quotient is also continuous
at a.

Conclusion: a function g may be continuous separately in z and y, without being
continuous in (z,y).

2.2 Differentiation in R"
2.2.1 Differentiation: gradient

A function f : R™ — R is called differentiable at a point a € R™ if there exists v € R"
such that

fla+h)— f(a)=v-h+o(h)

12



where o(h) denotes any function such that % — 0 as h — 0. In other words, if
[f(a+h) — f(a) —v-h]/|h| = 0 as h — 0. The vector v is called the gradient of f at a,

and is denoted by V f(a) or by 4L (a).

Note that in the case n = 1 we could simply divide by h to recover the definition in
Chapter 3 with v = f’(a). Here we can not simply divide by h, because is a vector, or
even by |h|, since the inner product has no division.

Alternatively, we can say that f is differentiable at a if

f(x) = f(a) +v-(z —a)+o(z —a),

o(z—a)
|z—al

where —0asz— a.

2.2.2 Differentiation: partial derivatives

By fixing all coordinates but xj, one can consider a function

zr = flar, ..., ap-1, Th, Qi1 - - - 70%)7

as above. This is a function on R and can be differentiated in the usual way. Its derivative
is denoted by 66—;;, and we have

8_f(a) :hmf(al,...,akth,...,an)—f(al,...,an).
oxy, t0 ;

2.2.3 Properties of derivatives

Theorem. If function f is differentiable at a € R™, then f is continuous at a.

Proof. We will use the property that f(a+h)— f(a) = v-h+o(h) with some v € R" and
function o(h) is such that % — 0 as h — 0. Indeed, it follows that o(h) = OI(:\) |h| — 0
as h — 0. Therefore, we have f(a + h) = f(a) +v-h+o(h) = f(a) as h — 0, which

means that f is continuous at a.

Theorem. If function f is differentiable at a € R™, then all partial derivatives exist at
a and we have
of

Vi = (@ @),

Proof. Let us take h = (0,...,0,¢,0,...,0), with all zeros except for t at the k"
position. Then the differentiability of f implies that

fla+h) = f(a) = f(a1,...,ap-1,a + t,a541,-..,a,) — f(a) = vt + o(t).
Dividing by ¢ and taking the limit as ¢ — 0, we obtain %(a} = vy, which implies the
statement.

Theorem. Conversely, the existence of partial derivatives does not imply differentiabil-
ity, not even continuity. Function g in 2.1.2 provides such an example.
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Indeed, let us look at g.(y) = g(x,y). If = 0, this function is constant (equal to zero),
hence differentiable. If x # 0, g, is a quotient of two differentiable functions, with the one
in the denominator non-zero, hence it is also differentiable. The similar argument shows
that ¢¥ is also everywhere differentiable. On the other hand, g is not even continuous at
(0,0), hence also not differentiable, since differentiability would imply continuity.

However, we still have some equivalence provided that partial derivatives are continuous:
Theorem. Let f : R® — R be such that 8f exist for all k =1,...,n, at all points, and

they are all continuous on R™. Then f is dzﬁerentzable at any pomt and

Vi@ = (gl o)

Proof. For simplicity, let us give the proof in the case of two variables (z,xs) € R
We can write

[+ hi, 0+ h) — f(x1,22) = f(x1 4+ hy, 22 + ho) — f(x1 + b, 22)
+ f(z1 + hy,22) — f(21,22)

0 0
= L s Ol (o + )
1

for some 7,0 € (0,1), by the mean value theorem applied to f coodrinate-wise. Note
that 7 and # may depend on x and h, but what is important is that they are in the
interval (0,1). Now, we have

af ——(x1 + Thy,z2) —

ozl(h) = 8{1:1

0
a—(ml,xg) —0ash—0

T1
because h — 0 implies h; — 0, and because g—zfz is continuous at (z1,z5). Similarly, we

have
of

or ——(x1,29) > 0as h — 0.
02

(131 + hl, i) + 9h2) 8.’1}2

as(h) =

It follows now that

0 0
fz1+ hy, 20+ ho) — fx1,20) = %(ﬂh + hy,x9 + Oho)hy + a—f(iﬁ + Thy, z2)hy

(i;( )+a2(h)>h2+ (g—iz)mlm))hl
v ht o(h),

with v = (ﬁ(x), %(m)) and with o(h) = a;q(h)hy + az(h)he. Finally, we have

LC
Il

hl
Id

U < oy oy Pl

< lay(h)| + |ag(h)] — 0as h — 0,

implying that f is differentiable at x and that V f(z) =
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2.2.4 Rules for differentiation

Theorem. If f,g are differentiable at a, so are f + g, fg; we also have V(f + g) =
Vf+ Vg and V(fg) = fVg+ gVf. Moreover, f/qg is differentiable at a provided
g(a) #0, and V(f/g) = %.

Proof. The proof of this theorem is straightforward from the definition. For example,
since f and g are differentiable at a, we can write
flat ) = fla) + Vf(@)- b+ or(h)
and
gla+h) =g(a)+ Vg(a) - h + o0s(h),
o1(h)

where S 0 and OTT("Z) — 0 as h — 0. Consequently, adding these equalities, we get

(f +9)a+h)=(f+9)(a) + (Vf(a) + Vg(a)) - h + o(h),

where o(h) = 01(h) 4 02(h) satisfies °|(:|) — 0 as h — 0. Therefore, f + g is differentiable

at a and V(f +g)(a) = Vf(a) + Vg(a). Similarly, multiplying formulae for f(a+ h) and
g(a + h) above, we get

fla+h)gla+h) = fla)g(a) + (f(a)Vg(a) + 9(a)V f(a)) - h+ o(h),

where

o(h) = (Vf(a)-h) (Vg(a)-h)+(f(a)+V f(a)-ht01(h))os(h)+(g(a)+Vg(a)-h+os(h))or(h).

It follows from properties of 01(h) and o02(h) that also °|(:|) — 0 as h — 0. Therefore, fg

is differentiable at a and V(fg)(a) = f(a)Vg(a) + g(a)V f(a).
The calculation for the differentiability of f/g and its gradient is similar to those
above and we omit it here (but recall that two proofs were given in the lectures).

The following chain rule is more interesting and less straightforward. First, we need a
definition. We will say that ¢ : R — R is continuously differentiable at a € R if ¢ is
differentiable in some open interval containing « and if ¢’ is continuous at a.

Chain rule. If f is differentiable at a and ¢ : R — R is continuously differentiable at
f(a), then po f is differentiable at a and V(p o f)(a) = ¢'(f(a))Vf(a).
Proof. We will use the mean value theorem for ¢. Indeed, if v = V f(a), we can write

(pof)lath)=(pof)a) =e(fla+h) —o(f(a))
= ¢(f(a) +v-h+o1(h) — ¢(f(a))
= ¢'(f(a) +0(h)[v - h+ 01 ()]
= [¢'(f(a))v] - b+ 0z(h),

where |0(h)| < |v-h+ o01(h)| by the mean value theorem, and where
02(h) = ¢'(f(a) + 6(h))or(h) +[¢'(f(a) + O(R)) — &'(f(a))]v - .

It follows that (h) — 0 as h — 0. Moreover, since ¢’ is continuous at f(a), we also

have 02|T(|h) — 0 as h — 0. This calculation means that ¢ o f is differentiable at a and

that V(¢ o f)(a) = ¢'(f(a))v = ¢'(f(a))Vf(a).
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2.2.5 Directional derivative

Let v € R™ be a vector. Then we define the derivative of f in the direction v by

OF (o) _ i £ 1) = F(a)

ov t—0 t ’

if such limit exists. In particular, if v = e, is the standard k' coordinate vector in R”,

we have % = 6‘9—;;. We also note that %(a) can be viewed as the derivative of the function

t— f(a+tv) at t = 0. As with derivatives in the directions of coordinate axis, we have
that the differentiability implies the existence of derivative in any direction v:

’g‘heorem. If f is differentiable at a, then %(a) ezists for all vectors v € R", and
a(a) =V f(a) v
Proof. We easily have from the definition that

fla+tv) = f(a) = Vf(a) - tv+o(tv) = tV f(a) - v + o(t),

which immediately implies the statement.

2.2.6 Mean value theorem in R"

There are different versions of the mean value theorem in R™. Let us give an example of
one of the simplest formulations.

Theorem (MVT in R"). Let z,y € R" and let f be differentiable in some set containing
the segment joining points x and y. Then there exists some 0 € (0,1) such that

fy) = f(z) = Vfz+0(y —2z)-(y— )

The point = + 6(y — ) lies on the segment joining points z and y, so this theorem is a
generalisation of the one dimensional MVT to R".

Proof. If x = y, the statement is trivial, so let us assume = # y, and let us denote
v =y — z. Let us consider function h(t) = f(z +t(y — z)). Then h is differentiable on
(0,1) and continuous on [0,1]. Hence, by the MVT, there is some 6 € (0,1) such that
h(1) — h(0) = K (F). We have h(1) = f(y), h(0) = f(z), and h'(t) = %(w + tv) by the
definition of the partial derivative. By Theorem 2.2.5 we obtain h/(t) = %(az +tv) =
Vf(z +tv) - v, finally implying

fly) = f(z) = h(1) = h(0) = K'(0) = V f(z +6v) - v,
which is the statement of the theorem, if we recall that v =y — x.

Applying the Taylor’s theorem to the function A in the proof, we immediately obtain the
Taylor’s theorem in R™. We leave the formulation of this theorem as an exercise.
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