M3P1/M4P1 (2005) Dr M Ruzhansky
Metric and Topological Spaces
Summary of the course: definitions, examples, statements.

Chapter 1: Metric spaces and convergence.

(1.1) Recall the standard “distance function” on R, defined by d(z,y) = |x — y|. This will be
a model for more general “distance” or “metric” functions on other sets.

(1.2) The Cartesian product X x Y of two sets X and Y is defined as a set of all ordered pairs
from X and YV, ie. X xY ={(z,y):z€ X,yeY}.

Metrics and metric spaces:

(1.3) A metric space (X,d) is (by definition) a set X together with a real valued function
(metric) d : X x X — R satisfying

(M1) d(z,y) > 0 for all z,y € X (non-negativity); d(xz,y) = 0 if and only if z = y (non-
degeneracy);

(M2) d(x,y) = d(y,x) for all z,y € X (symmetry);

(M3) d(z,y) < d(z,z)+d(z,y) for all z,y,z € X (triangle inequality).

Note that any set can be equipped with a so-called discrete metric defined by d(z,y) = 1 if
x # yand d(z,y) = 0 if z = y. In this way every set becomes a metric space. In general, we can
put many different metrics on a set. Other examples include the following family of metrics
on R™: di(z,y) = D.i", |z — yi| (taxicab metric), da(z,y) = /D1y (zi —yi)? (Euclidean
metric), doo(,y) = maxi<i<n |2; — y;| (sup-metric), and dp(z,y) = O 1 |25 — yi|p)l/p for all
1<p<oo.

(1.4) (Spaces of bounded and continuous functions) Let a < b. Then we define
B([a,b]) = {f : [a,b] = R : f is bounded}, C([a,b]) = {f : [a,b] = R : f is continuous}.

They become metric spaces when equipped with “sup-norm” (or “sup-metric’) doo(f,g9) =
SUPge(ap |f(2) — g(x)|. Note that on C([a,b]) we may also define another metric by di(f,g) =

fab |f(xz) — g(x)|dz. Check that this is no longer a metric on B([a, b]) since the non-degeneracy
property (M1) in (1.3) fails. There are, of course, other possible metrics on these spaces. For
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example, for every p € [1,00), dp(f,9) = (ff |f(x) —g(x) |pd3:) " is a metric on C([a,b]).

(1.5) (Induced metrics) If (X,d) is a metric space and A C X is a subset of X, then the
restriction d4 of d to A x A is a metric “induced’ on A from X. Thus, (A,d4) is a metric
space and A is called a metric subspace of X. When talking about a subset of a metric space
we always equip it with the induced metric (unless we state otherwise).

(1.6) (Balls) Let (X,d) be a metric space, a € X and r > 0. The “open” ball B.(a) centred at
a with radius r is defined by B,(a) = {z € X : d(z,a) < r}.

Bounded sets:

(1.7) A subset S of a metric space (X, d) is called bounded if there exists r > 0 and a € X such
that S C By(a).

(1.8) Suppose that S is a bounded subset of (X,d) and ¢ € X. Then S C Bgr(c) for some
R > 0. This property shows that we can change the centre of the ball in definition (1.7).

(1.9) If Sy,...,S, are bounded subsets of (X,d) and X # (), then the union S;U---U S, is a
bounded subset of (X, d).

Note that infinite unions of bounded sets do not have to be bounded. Also note, that all sets



are bounded in a space with the discrete metric since balls with radii strictly larger than one
are equal to the whole space. Of course, this situation is quite exceptional.

Convergence in metric spaces:

(1.10) We say that a sequence z, of points in a metric space (X,d) converges to x € X
if d(zp,z) — 0 as n — oco. We denote this by z, — x. We have the following simple
characterization of convergence:

(1.11) &y, —» x <= Ve > 03N Vn > N d(zp,x) < € <= Ve > 0 IN Vn > N z,, € B(z).

All these are also equivalent to saying that any ball centred at = contains all but finitely many
of z,,’s.

(1.12) (Uniqueness of limits) Let (X, d) be a metric space. Suppose that =, — = and z,, — y.
Then z = y.

Chapter 2: Open sets and topological spaces.

Let (X,d) be a metric space. Then we have the following definitions and properties:

(2.1) A set U C X is called open if for every z € U there is an € > 0 such that Be(z) C U.
An open set containing z is called an (open) neighbourhood of . We have the following simple
properties:

(2.2) Every “open” ball B,(a) is open in (X, d). This justifies the terminology in (1.6).

(2.3) x,, — z if and only if every open neighborhood of x contains all but finitely many of z,’s.

Suppose [ is any set. Assume that for each i € I we are given a set A;. Then I is called an
index set for the collection of sets A;.

(2.4) We have the following properties of open sets:

(T1) @ and X are open;

(T2) The union of any collection of open subsets of X is open;

(T3) The intersection of any finite collection of open subsets of X is open.

Continuous mappings:

Let (X1,d1), (X2,d2) be metric spaces and let f: X; — Xo.

(2.5) Let a € X;. Then f is said to be continuous at a if for every € > 0 there is a 6 > 0 such
that dy(z,a) < d implies da(f(z), f(a)) < e. If f is continuous at all points of X1, it is said to
be continuous (on X1).

Let S C X5. The preimage of S under f is defined by f~1(S) = {z € X1 : f(z) € S}.

(2.6) The following statements are equivalent:

(i) f is continuous on Xj;

(ii) Ya € X1 V ball B.(f(a)) 3 ball Bs(a) such that Bs(a) C f~1(Bc(f(a)));

(iii) for every open U C X; the preimage f~1(U) is open in Xj.

Topological spaces:

(2.7) Let X be a set. A topology on X is (by definition) any collection T of subsets of X
satisfying

(T1) 0,X € T;

(T2) Any union of sets in T is in T}

(T3) Any finite intersection of sets in 7" is in T'.

The sets in T" are called open sets of the topology. A topological space is (by definition) a set
together with a topology on it.

If (X,d) is a metric space, the collection of all sets open according to definition (2.1) is called
the metric topology (for the metric d), and will be denoted by T'(d). Thus,



(2.8) Every metric space is a topological space. By default, it will be always equipped with the
metric topology T'(d).

Let X be a set. Other examples of topologies are the discrete topology consisting of all subsets
of X and the indiscrete (or co-finite) topology consisting of the empty set and all U C X such
that X\U is finite. Note that the discrete topology is the metric topology for the discrete
metric d defined by d(z,y) = 1 for x # y and d(z,y) = 0 for x = y. Also note that the
indiscrete topology is never a metric topology if X is infinite (since any sequence of different
points converges to any point of X, if we use (2.9). This contradicts the uniqueness of limits
property (1.12) of metric spaces).

(2.9) (Convergence in topological spaces) We say that x,, — x if every open set containing z
contains all but finitely many of z,’s.

By characterization (2.3) this notion of convergence coincides with the one for metric spaces,
defined in (1.10).

Note that in general, in topological spaces limits are not unique. For example, if X = {1,2}
and T = {0, {1}, {1,2}}, then the sequence z, = 1 satisfies z,, — 1 and z,, — 2. This is not
possible in metric spaces (and in more general Hausdorff spaces from Chapter 3) because of
the uniqueness of limits property (1.12).

Equivalent metrics:

(2.10) It may happen that two metrics d; and ds on a set X define the same topology, i.e.
T(d1) = T'(d2). Then these metrics are called equivalent. We have the following criteria:
(2.11) Let dy and dy be two metrics on X such that for some K > 0 we have da(z,y) < Kdi(z,y)
for all z,y € X. Then every dy-open set is dj-open, or T'(d2) C T'(dy).

(2.12) Let T1,T> be two topologies on a set X. Topology T; is said to be stronger than T5
if To» C Ty (so T contains more sets than 75). In this case T is said to be weaker than T7.
In (2.11) we have T'(d2) C T'(dy), so the topology defined by dy is weaker than the topology
defined by d;.

Note that on a set X, the discrete topology is the strongest topology and {0, X} is the weakest
one.

As a consequence of (2.11), we get the following criterion of the equivalence of two metrics:
(2.13) Let dy and dy be two metrics on X such that for some K, H > 0 we have da(z,y) <
Kdy(z,y) and dy(z,y) < Kds(z,y), for all z,y € X. Then metrics d; and dy are equivalent,

As an example we can conclude that all metrics dp, 1 < p < oo, on R", are equivalent. Indeed,
it is easy to check that du(z,y) < dy(x,y) < n'/Pdy(x,y) for all z,y € R” and all 1 < p < oo.
Hence T'(dy) = T'(do) for 1 < p < oo and so all these metrics are equivalent and lead to the
same (Euclidean) topology. On C([a,b]), we have d1(f,g) < (b—a)dw(f,g), so T'(d1) is weaker
than T'(dwo).

Continuous mappings in topological spaces:

(2.14) A mapping f : X7 — X5 between two topological spaces is called continuous if for every
U open in X» its preimage f~1(U) is open in X;.

By (2.6) this notion is consistent with the notion of continuity in metric spaces, which was
defined in (2.5). Note that we define continuity on the whole space only, not at particular
points, as in metric spaces in (2.5).

(2.15) Let f: X; — X5 and g : Xo — X3 be continuous mappings. Then the composition
go f: X1 — Xs is continuous. Here we use the usual definition (g o f)(z) = g(f(x)).

(2.16) Let X and Y be two topological spaces. A mapping f : X — Y is called a homeomor-
phism if



(i) f: X — Y is bijective (i.e. injective and surjective, or one-to-one and onto);

(ii) f: X — Y is continuous;

(iii) the inverse mapping f~!:Y — X is continuous.

Topological spaces X and Y are said to be homeomorphic if there exists a homeomorphism
f : X — Y. Homeomorphic spaces are sometimes called topologically equivalent. For exam-
ple, intervals (0,1) and (a,b) are topologically equivalent, for any a < b. Indeed, function
f:(0,1) = (a,b) defined by f(z) =a+ (b — a)z is a homeomorphism between them.

(2.17) A property which holds in all topologically equivalent spaces is called a topological prop-
erty.

Such properties will be of high importance because they are invariants of topological spaces.
Using these properties we can decide when two spaces are not topologically equivalent. Exam-
ples of topological properties are “X has n elements”, “infinite X is countable”, “all subsets
of X are open”, etc. This shows, for example, that Q and R are not topologically equivalent
whatever topologies we put on them; or that (R, discrete) and (R, Euclidean) are not topolog-
ically equivalent.

Note that property (2.15) and definitions (2.16) and (2.17) imply that the topological equiva-
lence is an equivalence relation on the set of all topological spaces.

The following is another characterisation of equivalent metrics in terms of topologies:

(2.18) Let dy and dz be two metrics on X. Then d; and ds are equivalent if and only if the
identity map from (X, d;) to (X, ds3) is a homeomorphism.

Closed sets:

(2.19) A subset A of a topological space X is called closed if its complement X\ A is open.
(2.20) Let X be a topological space. Then

(i) 0 and X are closed;

(ii) any intersection of closed sets is closed;

(iii) any finite union of closed sets is closed.

(2.21) The closure in X of a subset A C X is defined as the intersection of all closed sets in X
containing A. The closure of A is denoted by A. The interior intA of A is defined as the union
of all open sets contained in A. The boundary A of A is defined by A\intA. It follows from
(2.20), part (ii), and property (T2) that the closure A is closed and the interior intA is open.
(2.22) Let X be a topological space and let S C X. Then the boundary 9S of S is always
closed. Further, let open U and closed F be such that U € S C F. Then U CintS and S C F.
(2.23) Let X be a topological space and let S C X. Then S is open if and only if for every
x € S there is an open set U, such that x € U, and U, C S.

Compare (2.23) with definition (2.1) of open sets in metric spaces.

(2.24) Let (X, T) and (Y, S) be topological spaces and let f : X — Y be continuous. If z,, — =
in X, then f(z,) — f(z)in Y.

Recall that this was a characterisation of continuity of functions f : R — R at the very
beginning of M2P1.

Chapter 3: Hausdorff spaces and subspaces.

Topological subspaces:

(3.1) Let (X,T) be a topological space and let Y C X. We define the induced topology on Y
by Ty ={UNY : U € T}. Then we have:

(3.2) (Y,Ty) as above is a topological space.

Unless stated otherwise, we will always equip subspaces of a topological space with the induced
topology and call them topological subspaces.



The following statement says that in metric spaces, the topology defined by the induced metric
is the same as the induced metric topology:

(3.3) Let (X,d) be a metric space, let Y C X, and let dy = d|yxy be the induced metric.
Then T(d)y = T(dy).

(3.4) Let (X,T) be a topological space and let Y C X. Let iy : ¥ — X be the injection
mapping: iy (y) =y for all y € Y. Then iy is continuous from (Y, Ty ) to (X, T).

Product spaces:

(3.5) Let (X1,T1) and (X2, T5) be topological spaces. A subset of X; x X5 is said to be open
in the product topology if it is a union of sets of the form U; x Us, where U; is an open subset
of X;,i=1,2.

(3.6) The above definition makes X; x Xy a topological space. This topology is called the
product topology.

(3.7) The product topology on R x R is the usual (metric) topology of R?. By induction this
can be easily extended to R™. Note that in the proof of (3.7) we establish an interesting fact
that open sets in the Euclidean R are unions of open intervals.

Hausdorff spaces:

Consider an example of X = {1,2,3} with topology T = {0, {1},{1,2}, X}. Let z,, = 1 for all
n. Then x, — 1, x, — 2 and z,, — 3. Also, any sequence of different element of an infinite
set X converges to any element of X when X is equipped with the indiscrete topology. To
eliminate these phenomena, one defines the notion of a Hausdorff space.

(3.8) A topological space (X, T) is called Hausdorff if for every a,b € X with a # b, there exist
open sets U,V such that a e U, b€ V and U NV = .

(3.9) Every metric space is Hausdorff.

(3.10) In a Hausdorff space, every convergent sequence has a unique limit.

(3.11) All one-element sets in a Hausdorff spaces are closed. Therefore, all finite sets are also
closed. In particular, if (X,T) is a finite Hausdorff space, then the topology T is discrete.
(3.12) Every topological subspace of a Hausdorff space is Hausdorff.

(3.13) Let (X;,7T1) and (X2,T2) be topological spaces and let f : X; — Xy be injective (i.e.
one-to-one) and continuous. If Xs is Hausdorff then X; is Hausdorff. Thus,

(3.14) “Hausdorft” is a topological property.

(3.15) If X and Y are Hausdorff then X x Y is also Hausdorff (in the product topology).

Chapter 4: Compact spaces.

Let (X,T) be a topological space.

(4.1) A collection {U,}, a € I, of subsets of X is called an open covering of X if each U, is
open and UyerU, = X.

(4.2) Topological space X is called compact if every open covering of X has a finite subcovering.
(4.3) (Heine-Borel theorem) Closed intervals [a,b] C R are compact (in the standard Euclidean
metric topology).

(4.4) Let X be compact and let f: X — R be continuous. Then f is bounded (i.e. f(X) is a
bounded set in Euclidean R).

Note that combined, (4.3) and (4.4), recover the corresponding statement from M2P1.

Compact subspaces:

(4.5) Let (X,T) be a topological space and let A C X. Then the topological space (A,T4) is
compact if and only if for every collection C' = {U,} of open sets U, C X in (X,T') for which
A C |, Ua, there exists a finite subcollection of C' which still covers A.

(4.6) A compact subspace of a Hausdorff space is closed.



(4.7) A closed subspace of a compact topological space is compact.

(4.8) Thus, if X is a compact Hausdorff space and A C X, then A is compact if and only if A
is closed.

(4.9) Let X be compact and f : X — Y be continuous. Then the image set f(X) is compact
(in the induced topology of Y'). Thus,

(4.10) “Compactness” is a topological property.

(4.11) A compact subspace of a metric space is bounded.

(4.12) Thus, a compact subset of any metric space is closed and bounded.

(4.13) If X and Y are compact topological spaces, then X X Y is compact (in the product
topology).

(4.14) A subset of R™ is compact if and only if it closed and bounded.

In particular, this implies the Heine-Borel theorem (4.3). However, do not forget that in lectures
we actually used (4.3) and properties of compact sets in the product topology to obtain (4.14).

Sequences and compactness:

Recall the Bolzano-Weierstrass theorem from M1P1: any bounded sequence of real numbers
has a convergent subsequence. A sequence of points x,, is bounded means that z,, € [a,b] for
some [a,b]. So this theorem can be reformulated in the following way:

(4.15) Let X = [a,b] C R. Then any sequence of points of X has a convergent subsequence.
This suggests the following definition:

(4.16) A topological space X is called sequentially compact if every sequence of points of X has
a convergent subsequence.

The first main theorem is:

(4.17) If X is a compact metric space, it is sequentially compact.

(4.18) (FIP: finite intersection property) X is compact if and only if the closed sets in X have
the finite intersection property, i.e. if {Cy} is a collection of closed sets in X with (), Co =0,
then there is some finite subcollection C1,Cs, ..., Cy, of {Cy} such that N, C; = 0.

(4.19) Let A C X. Then z € A if and only if every open set containing 2 contains a point of A.
We also have the converse of (4.17):

(4.20) If X is a sequentially compact metric space, then X is compact.

(4.21) Thus, if (X, T) is a topological space with T" being the metric topology for some metric,
then X is compact if and only if it is sequentially compact.

In general (non-metrisable) topological spaces compactness and sequential compactness are not
equivalent.

The following properties of sequentially compact metric spaces are useful.

(4.22) (Lebesgue’s covering lemma) Let X be sequentially compact and let C' be an open
covering of X. Then there is an € > 0 such that every ball of radius € is contained in some set
U € C. Such ¢ is called a Lebesgue number of the covering C.

(4.23) If X is sequentially compact, it is totally bounded, i.e. for every e > 0 there is a finite
collection of balls B.(z;) with radius e that covers X.

Chapter 5: Complete metric spaces.

A Cauchy sequence in a metric space (X, d) is (by definition) a sequence x,, € X such that for
every € > 0 there is N such that for all n,m > N holds d(zy,z,,) < €. Here are some basic
properties of Cauchy sequences:

(5.1) Any Cauchy sequence is bounded.

(5.2) If a Cauchy sequence x,, has a convergent subsequence, say z,, — = € X, then x,, — z.
(5.3) Any convergent sequence is a Cauchy sequence.



Complete metric spaces:

(5.4) Metric space X is called complete if every Cauchy sequence of points of X converges to a
point of X.

We have the following properties:

(5.5) Every compact metric space is complete.

(5.6) The real line R with the Euclidean metric is complete.

(5.7) R™ is complete with respect to any of the equivalent metrics dp, 1 < p < oo.

(5.8) Every closed subset of a complete metric space is complete.

Space C([a, b]) of continuous functions:

(5.9) Let f,, : [a,b] — R be a family of functions. We say that a sequence f, converges to
f :[a,b] = R pointwise if f,(x) — f(x) for every z € [a,b]. In other words, it means that
for every = € [a,b] and every € > 0 there exists N = N(e,x) such that for all n > N we have
[fn(z) = fz)] <e

(5.10) Let f, f : [a,b] — R. We say that f, converges to f uniformly if for every e > 0 there
exists N = N(e) such that for all n > N and all z € [a,b] we have |f,(z) — f(z)| <.

The difference between these two definitions is that in (5.9) the number N depends on € and
x while in (5.10) it is independent of = (think about this important difference!) Now, we have
the following properties of continuous functions:

(5.11) Let f,, : [a,b] — R be a family of continuous functions. If f,, converges to f : [a,b] = R
uniformly on [a, b] then f is continuous.

(5.12) (recall definition (1.4)) Let C([a,b]) be the space of all continuous f : [a,b] — R. We
equip C([a,b]) with the sup-metric do, defined by (1.4). Then we have:

(5.13) fn — f in the metric space (C([a,b]),d) if and only if f,, converges to f uniformly on
[a, b].

(5.14) Space C([a,b]) with the sup-metric is a complete metric space.

Chapter 6: Fixed point theorem.

(6.1) Let (X,d) be a metric space. A mapping f: X — X is called a contraction if there is k,
0 < k < 1, such that for every x,y € X we have d(f(z), f(y)) < kd(z,y).

(6.2) If (X,d) is a non-empty complete metric space, then every contraction mapping f on X
has a unique fixed point, i.e. there is a unique point z € X such that f(z) = x.

(6.3) (Application: Fredholm integral equations) Let p : [0,1] — R be continuous, p > 0, and
fol p(t)dt < 1. Let F € C([0,1]). Then there exists a unique function f € C(|[0,1]) such that
Fla) = Fla) — J3 f(p(t)dt.

With this fact we can argue the existence of a solution f to the differential equation f'+pf = F.
Chapter 7: Connected topological spaces.

Connectedness:

(7.1) Let (X,T) be a topological space. Then the following three statements are equivalent:
(i) There exist non-empty open subsets U and V of X such that UNV =0 and UUV = X.
(ii) There exists a subset U of X such that U is open and closed, and U # () and U # X.

(iii) There is a continuous function from X onto {0,1}, where {0,1} is equipped with the
discrete topology.

This property is taken as the definition of a disconnected topological space:
(7.2) A topological space (X, T) is called disconnected if there exist non-empty open sets U and
V such that UNV =0 and U UV = X. Otherwise X is called connected.



Note as an example, that the only connected sets in X with discrete topology are the empty
set and one-point sets. Of course, this situation is quite special.

(7.3) Let (X1,T1), (X2,T2) be topological spaces and let f : X1 — X» be continuous. If X; is
connected, then f(X;) is also connected (as a topological subspace of (X2,7%)). Thus,

(7.4) “Connectedness” is a topological property.

(7.5) Let (X, T) be a topological space and let S C X. If S is connected, then its closure S is
also connected.

Path-connectedness:

(7.6) Suppose that a and b are two points in a topological space (X,T). A path from a to b
is (by definition) a continuous mapping f : [0,1] — X such that f(0) = a and f(1) = b. Here
[0, 1] is equipped with the standard Euclidean topology.

(7.7) A topological space (X, T) is called path-connected if for any two elements a,b € X there
exists a path from a to b. Then we have the following theorem:

(7.8) Every path-connected topological space is connected.

(7.9) (Glueing of paths) Let f,g : [0,1] — X be two continuous mappings such that f(0) =
a, f(1) = b,9(0) = b,g(1) = c. Define h:[0,1] - X by h(t) = f(2t) for 0 < ¢t < 1/2 and by
h(t) =g(2t —1) for 1/2 <t < 1. Then h(0) = a, h(1) = ¢, and h is continuous, thus defining a
path from a to ¢, which is called the glueing of paths f and g. Using this notion, we can prove
the following theorem:

(7.10) Every open connected subset S of R™ with the standard topology is path-connected.

In general topological spaces, the converse to (7.8) is not true: connectedness does not imply
path-connectedness.

Special case: intervals in Euclidean R:

(7.11) An intervalis (by definition) a subset of R of one of the following forms (a, b), (a, ], [a, ),
[a,b], (—o0,b), (—00,b], (a,00), [a,00), (—00,00). Then we have:

(7.12) Every interval in R with the Euclidean topology is connected.

(7.13) A subset S of R is an interval if and only if for any a,c € S and any b € R such that
a < b < c it follows that b € S.

(7.14) Let S be a subset of R. If S is not an interval, then it is disconnected.

(7.15) The connected subsets of R with the Euclidean topology are the intervals.

Chapter 8: Completions (of metric spaces).

This chapter is a continuation of Chapter 5.

(8.1) Let (X, d) be a metric space. A complete metric space X™* is called a completion of X if
X is a topological subspace of X* and X = X*.

For example, R is a completion of the set @ of rational numbers. The main theorem here is
(8.2) Every metric space (X, d) has a completion. This completion is unique up to an isometry
leaving X fixed.



