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Some exercises to the course

1. Work out the details of the proof of the Riemann–Lebesgue theorem. In particular,
investigate the case when some of ξj’s are zero.

2. Prove that f ∈ S(Rn) if and only if for all α ≥ 0 and N ≥ 0 there is a constant
Cα,N such that |∂αϕ(x)| ≤ Cα,N(1 + |x|)−N for all x ∈ Rn.

3. Prove that
∫
Rn

dx
(1+|x|)ρ <∞ if and only if ρ > n. Also prove that

∫
|x|≤1

dx
|x|ρ <∞ if

and only if ρ < n.

4. Let ϕ, ψ ∈ S(Rn). Prove that ϕ̂ψ(ξ) = (ϕ̂ ∗ ψ̂)(ξ).

5. Prove the following generalisation of Hölder’s inequality. Let 1 ≤ p, q, s ≤ ∞ be
such that 1

p
+ 1
q
= 1
s
. Let f ∈ Lp(Rn) and g ∈ Lq(Rn). Prove that fg ∈ Ls(Rn)

and that ||fg||Ls ≤ ||f ||Lp ||g||Lq .

6. Let f be a smooth function such that f and all of its derivatives are bounded by
some polynomials. Prove that the mapping u 7→ fu is well-defined and continuous
from S ′(Rn) to S ′(Rn).

7. Prove that 1̂ = δ.

8. Work out the details of all the statements from 1.3.9 about distributions.

9. Let Ω be an open subset of Rn. Show that our canonical identification of functions
with distributions yields the inclusions Lploc(Ω) ⊂ D

′(Ω) for all 1 ≤ p ≤ ∞. Prove
that these mappings f 7→ uf are continuous from Lploc(Ω) to D

′(Ω).

10. Define u : R→ R by

u(x) =

{
x, if x ≤ 1,
2, if x > 1.

Calculate its distributional derivative.

11. Prove that the δ-distribution is not an element of L1loc(R
n).

12. Define u(x) = |x|−a for x ∈ B(0, 1) ⊂ Rn, x 6= 0. Also set u(0) = 0. Find
conditions on a, n, p, k for which u ∈ Lpk(B(0, 1)).

13. Work out the details of 1.3.15 about mollifiers.
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14. Let Ta be a pseudo-differential operator with symbol a ∈ Sm. Let f ∈ S(Rn).
Show that all the derivatives of Taf are rapidly decreasing, thus completing the
proof of 2.1.3 that Taf ∈ S(Rn).

15. Work out all the details of the convergence criterion in 2.1.3.

16. Let a ∈ Sm and let γ ∈ C∞0 (R
n × Rn) be such that γ = 1 near the origin. For

ε > 0 define aε(x, ξ) = a(x, ξ)γ(εx, εξ). Prove that aε ∈ Sm uniformly in 0 < ε ≤ 1
(i.e. show that the constants in symbolic inequalities may be chosen independent
of 0 < ε ≤ 1); Prove that ∂αx∂

β
ξ aε(x, ξ) → ∂αx∂

β
ξ a(x, ξ) as ε → 0, uniformly in

0 < ε ≤ 1, for all x, ξ ∈ Rn.

17. Let a ∈ Sm. Prove that the adjoint operator T ∗a : S(R
n) → S(Rn) is well-defined

and continuous.

18. Let u ∈ S ′(Rn) and ϕ ∈ S(Rn). Prove that all the derivatives of (u ∗ ϕ)(x) =
u(τxRϕ) with respect to x are continuous.

19. In the proof of the composition formula in the first case, show that the derivatives
of the error have the symbolic behaviour. Namely, let a ∈ Sm1 , b ∈ Sm2 , and
assume that b(y, ξ) is compactly supported with respect to y. Let RN(x, y, ξ) =

a(x, ξ + η) −
∑
|α|<N

(2πi)−|α|

α!
∂αξ a(x, ξ)∂

α
x b(x, ξ) be the remainder in the Taylor’s

formula. Prove that
∣
∣
∣
∣∂
β
x∂
γ
ξ

(∫

Rn
e2πix∙ηRn(x, ξ, η)̂b(η, ξ)dη

)∣∣
∣
∣ ≤ Cβ,γ,N (1 + |ξ|)

m1+m2−N−|γ|,

for all x, ξ ∈ Rn and all multi-indices β, γ.

20. Let x0 ∈ Rn, a ∈ Sm1 , b2 ∈ Sm2 , and assume that b2(y, ξ) = 0 for |y− x0| < 1. Let

c(x, ξ) =

∫

Rn

∫

Rn
e2πi(x−y)∙(η−ξ)a(x, η)b2(y, ξ)dydη.

Prove that ∣
∣∂βx∂

γ
ξ c(x, ξ)

∣
∣ ≤ Cβ,γ,N (1 + |ξ|)

m1+m2−N ,

for all |x− x0| ≤ 1/2, all ξ ∈ Rn, all multi-indices β, γ, and all N ≥ 0.

21. Work out the details of the proof of the theorem that says that an operator with
a compound symbols is a pseudo-differential operator. In particular, work out
the part with the estimation of the remainder, and the part when the compound
symbols in not compactly supported.

22. Prove that if ak is a smooth function such that ak(x, λξ) = λkak(x, ξ) for λ > 1
and |ξ| ≥ 1, then ak ∈ Sk.

23. Prove that the composition of two pseudo-differential operators with classical sym-
bols is again a pseudo-differential operator with a classical symbol.
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