Example Sheet 1 M*P18: Fourier Analysis and Theory of Distributions

Exercise 1.1. Consider the meromorphic function

1 cos|(m—0)z]

F =
(2) 1+22 2sinnz

a) Show that the poles of F'(z) occur at z = +i and z = n, for n € Z, with:

, cosh(m — 0) cos(nb)
F+i] = -0 7Y Fp) = W)
Res[F, &i] 4sinht Res(F,n) 27(1 + n?)
b) For N € N, let FZ(N) be the curves
F(IN)(t)—<N+;> (1+it), —1<t<1
1

rgN)(t):<N+2> (=t +1), —1<t<1
™ — 1 :

s = (N+g) (1), —1<t<1
() 1 :

i (t)= N+§ (t—1), —1<t<1

and let TY) be the closed contour which results from following I'y, I'g, I'3 and I'y in
turn. Sketch T™Y)| together with the locations of the poles of F' in the complex plane.

¢) Show that if 0 < 6 < 27, then:

where C' is a fixed constant, independent of N.

d) By applying Cauchy’s residue theorem, show that for 0 < 6 < 27

N
cosh(m — Z e
" 2sinh7w 'y

inf

<
- N

and conclude that

cosh(m —0) f: etn?
2sinht 4~ 1+n?’

with the sum converging uniformly in 6.



Exercise 1.2. Suppose that f € C°(R) is a continuous function with period 27, i.e.
f(0) = f(0+2m). For 6 € [0,27), define:

h(m — 0+ «) 2 cosh(—m — 0 + «)
2sinh 7 da 9 f(@) 2sinh

do

Y COS
b(9) = /0 f(@)

and extend 1 to a function on R by periodicity: 1(0) = (0 + 27).
a) Show that ¢ € CO(R).

b) By directly differentiating the formula, show that:

0 sinh(m — Q 2 sinh(—m — «
R R

2sinh 0 2sinh 7
and show that 1 € C1(R).
c) Differentiating again, show that
V(0) = = £(0) + ¥ (0)
Conclude that ¢ € C%(R) is a solution to

—"(0) +9(0) = f(), HeR

Exercise 1.3. Let ¢ € C%(R) be 2m-periodic, i.e. ¢(f) = ¢(f + 2), and suppose that ¢
satisfies:
—¢"(0) + ¢(9) = 0, 0 eR.

a) Show that if ¢ attains a maximum at 0y € R, then ¢(6y) < 0.
b) Show that if ¢ attains a minimum at 6y € R, then ¢(6y) > 0.
c¢) Show that ¢ = 0.
d) Conclude that there is at most one 1) € C?(R) satisfying 1(0) = (6 + 27) and solving:
)+ 6(0) = [0),  OER
where f € C°(R) is a given 27-periodic function.

Exercise 1.4. For t € R let:

() = 0 t<0
X = 6_% t>0

a) Show that x € C*°(R).
b) Show that there exists a function ¢ € C§°(R"™) such that

Ho<y<i



ii) supptp C Ba(0)
i) ¢¥(x) =1 for |z| < 1.

Hint: First construct a positive smooth function x : R — [0, 1] such that
- 0 t<~—1
x(t) = { 1 t>1

Exercise 1.5. a) Suppose ¢ € &(R"). Let {x;};°;, C R" be a sequence with 2; — 0.
Show that
To, @ — O, as [ — oo.

in &(R™), where 7, is the translation operator defined in equation (1.2).
b) Suppose ¢ € &(R™), show that
Ahp — Dy, as h — 0,
in &(R™), where A? is the difference quotient defined in Example 2.

Exercise 1.6. a) Show that . is a vector subspace of &(R"). Show that if {¢;}72, is a

sequence of rapidly decreasing functions which tends to zero in ., then ¢; — 0 in
ER™).

b) Show that Z(R") is a vector subspace of .. Show that if {¢;}72, is a sequence of
compactly supported functions which tends to zero in Z(R") then ¢; — 0 in .77

¢) Give an example of a sequence {¢;}72; C C5°(R") such that

i) ¢; = 0in .7, but ¢; has no limit in Z(R").
ii) ¢; — 01in &(R™), but ¢; has no limit in ..

Exercise 1.7. a) Suppose ¢ € .. Let {2;}7°, C R" be a sequence with z; — 0. Show
that
To, @ — @, as [ — oo.

in ., where 7, is the translation operator defined in equation (1.2).
b) Suppose ¢ € .7, show that
Alg = D;g, as h — 0,

in ., where A? is the difference quotient defined in Example 2.
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Exercise 2.1 (*). Suppose that we work over R™ and that f,g,h € 7.

a) Show that for any multi-index «, we have that D*f € LP(R™) for 1 < p < oo, i.e. that

HDaf“Lp(Rn) = (/]Rn ’Daf(x)‘p dl‘) ’ < Q.

b) Define
F : R"xR",
(z,y) = f(2)g(y — ).
Show that F' € L'(R™ x R").

c) For each z € R™, set

G, : R"xR",
(y,2) = f(y)g(2)h(z —y — 2).

Show that G, € LY(R™ x R™).
Exercise 2.2. Show that Theorem 1.10 holds under the alternative hypotheses:
a) f € LYR"), g € CF(R") with supg. |D%| < oo for all |a| < k.
b) f € L'(R") with supp f compact, g € C*(R").
Exercise 2.3. a) Prove the following identities for 7, s > 0 and z € R™:

i) Br(z) + Bs(0) = Brys(w)
ii) By(z)+ Bs(0) = Brys(x)
iii) By(z)+ Bs(0) = By1s(x)

Suppose that A, B C R™. Show that:
b) If one of A or B is open, then so is A + B.
c) If A and B are both bounded, then so is A + B.
d) If A is closed and B is compact, then A + B is closed.
e) If A and B are both compact, then so is A + B.

Exercise 2.4. Show that if f € CF(R™) and g € C4(R") then fxg € Ca T (R™). Conclude
that 2(R") is closed under convolution.

Exercise 2.5 (*). Suppose that F': R"” x R” — R is a positive integrable simple function,



a) Show that Minkowski’s integral inequality holds for the case p = 1:

/Rn /Rn Fle.y)do|dy < /n /n |F (2, y)| dydz

b) Next prove Young’s inequality: if a,b € Ry and p,q > 1 with p~ + ¢! = 1 then:

aP bl
ab < —+ —
p q

Hint: sett = p~t, consider the function log [taP + (1 — t)b9] and use the concavity of
the logarithm

c¢) With p,q > 1 such that p~* + ¢~! = 1, show that if | f1l, =1 and [|g|[, = 1 then

/n |f(z)g(z)|dx < 1.

Deduce Hélder’s inequality:

[ 1f@g@ldr <l llgl,  forall £ € PR, g€ LR,

d) Set G(y) = (fpn F(z,y)dx)" ™
i) Show that if ¢ = J25:

p—1

(Gl ey = | [ Pl

Lp(RM)

ii) Show that:

p

‘/np(x,.)dx o :/n ( 5 G(y)F(x,y)dy> i

iii) Applying Holder’s inequality, deduce:

‘ / F(z,")dx

e) Deduce that Minkowski’s integral inequality

A ") < [ [ reara] o

holds for any measurable function F': R™ x R™ — C, where 1 < p < o0.

p

<161y [ IF Gl gogary o
LP(R™) R™

/n F(z,y)dx

Exercise 2.6. a) Show that d,, as defined in Example 7 is continuous and linear, hence
a distribution. Find the order.



b) Show that T, as defined in Example 7 is continuous and linear, hence a distribution.
Find the order.

c) By constructing a suitable sequence of smooth functions show that the order of P.V. (%)
is one.

Exercise 2.7. Suppose f € L}, (). Take ¢, as in Theorem 1.13, and define for z with
d(z,00) > e

fe(x) = Tf [Tx¢e] .
Show that for any compact K C Q:

fe = Fllpigry = 0

as € — 0.
[Hint: follow the proof of Theorem 2.2, but use part b) of Theorem 1.13]

Exercise 2.8. a) Show that if f1, fo € C%(Q) and a € C*(Q), then
aly +Tp = Tafi+s,

b) Show that if f € C*(Q) then
Dan — TDaf
for |a| < k. Deduce that ¢t o D* = D% o ¢.

¢) Deduce that if f € C*(Q) then
> oD Ty = Tyy.
|o| <k

where
Lf=Y a.D"f

o<k
Exercise 2.9. a) Show that for f,g € CJ(R"):
Tpog = Tp+ Ty
b) Show that convolution is linear in both of its arguments, i.e. if u; € 2'(R™) and
ug, 44 have compact support then
(u1 + aug) * ug = uy * us + aug * us

and
ug * (us + auyg) = ug * ug + auj * uyg

where a € C is a constant.
Exercise 2.10. a) Show that if ¢ € Z(R") then
do*x¢p=0¢
b) Show that if u € 2'(R™) has compact support, then

do*xu=1u
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Exercise 3.1. a) Suppose that {¢;}72; C &(Q) is a sequence such that ¢; — ¢ in &($),
and y € 2(2). Show that

X¢; = x¢ in 2(Q).

b) Show that if ¢ € &(£2), then there exists a sequence {¢;}52; C () such that ¢; — ¢
in £(Q).
[Hint: Take an exhaustion of Q by compact sets and apply Lemma 1.14]

Exercise 3.2. a) Prove Lemma 2.11.
[Hint: You should argue in a similar fashion to the proof of Lemma 2.9/

b) Show that we have the inclusions:
'R c Cc 2 RY).
Exercise 3.3. Let {a;}72; C R be a sequence of real numbers. Define for ¢ € C*(R):
00
ulg) = > _ a;6())
j=1
provided that the sum converges. Give necessary and sufficient conditions on a; such
that:
a) u € &'(R).
b) ue ..
c) ue Z2'(R).
Exercise 3.4. For ¢ € R", define e¢(x) = €. Show that T,, € ./, and that:
Tee — 0, as ¢ — oo
in the topology! of .7".

Exercise 3.5. Calculate the Fourier transform of the following functions f € L!(R):

sinx

a) f(z) = 1422

1
b) f(z) = o for € > 0 a constant.

(2=
c) f(z) = T e , where o > 0, t > 0 and y are constants.
t

!This is defined precisely as the topology of 2'(Q), mutatis mutandis.



1
coshz’

*d) f(z) =

Exercise 3.6. Suppose f € C'(R") and that f, D;f € L'(R™). Fix ¢ > 0. Show that

there exists f. € C}(R™) such that

o)}

I[f - szLl(Rn) + H‘Djf - DjfeHLl(Rn) < 3

[Hint: First construct, for large R, a smooth cut-off function xg(x) with xg(x) =1 for
|z| < R, xgr(x) =0 for |z| > 2R and |Dxgr(z)| < C, where C is independent of R.|

Exercise 3.7. Suppose f € L'(R"), with supp f C Bg(0) for some R > 0.

a) Show that f € C°°(R") and for any multi-index:

sup
geRn

Do ()] < B |1l 1 ey

b) Show that f is real analytic, with an infinite radius of convergence, i.e.:

=S D)
holds for all £ € R™.

¢) Show that if f(¢) vanishes on an open set, it must vanish everywhere.
[Hint: use part i) of Lemma 3.2/

You may assume the following form of Taylor’s theorem. Suppose g € CF+1(

for x € B,(0):
Z D%( i‘ + Z Rg(x)x?

|| <K T |8l=k+1

where the remainder Rg(x) satisfies the following estimate in B,(0):

R < — max max |D% )
o) < gy s, mas |D"0(3)

See §A.1 of the notes for notation.

B,(0)).

Then
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Exercise 4.1. Consider the following ODE problem. Given f : R — C, find ¢ such that:
—¢"+o=1 (1)
a) Show that if f € .7, there is a unique ¢ € . solving (1), and give an expression for .
b) Show that
@) = [ 1Gla =iy

where
lew x <0,

_ 2
G(z) = { %e‘”” x> 0.

Exercise 4.2. Suppose f € L'(R3) is a radial function, i.e. f(Rx) = f(x), whenever
R € SO(3) is a rotation.

a) Show that f is radial.

b) Suppose that £ = (0,0, (). By writing the Fourier integral in polar coordinates, show
that

00 s 2
£ _ —i¢rcosf, 2 - 0dOdrdao.
fo= [ [, ] et noavarag

c) Making the substitution s = cosf, and using the fact that f is radial, deduce:

sinr |¢]

r[¢]

r2dr

F(6) = 4 /0 T

for any & € R™.

Exercise 4.3. (*) Suppose that f,g € L?(R"), and denote the Fourier-Plancherel trans-
form by F. You may assume any results already established for the Fourier transform.

a) Show that
1

(f,9) = G

(Flgl, Flg) -

b) Recall that f(y) = f(—y). Show that:
F ] = @em)" f.

Hence, or otherwise, deduce that F : L?(R") — L?(R") is a bijection, and that
F L*(R™) — L?(R") is a bounded linear map.



c¢) Show that:

FIf1E) = Jim ; (O)f(m)e—ia:.fd$

with convergence in the sense of L?(R™).
d) Suppose that f € C*(R") and f, D, f € L*(R"). Show that &F[f](¢) € L*(R™) and:

F(D;£1(6) = ig; F1f1E)

e) For x € R let:

i) Show that f € L%(R).
ii) Show that:

T -1<¢é<l,
0 =1

f) i) Show that for all x € R™:
|fxg(z)] < HfHL2(R”) H9HL2(R")-
ii) Show that fxg € C°(R") and:
frg=FFIf]- Flo]

where:

1
(2m)" Jgn

Ff)) = f&)erde.

[Hint for parts a), b), d), f): approximate by Schwartz functions/

Exercise 4.4. Work in R3. For k > 0, define the function:

el
" 4r 2|
a) Show that G € L!(R3).
b) Show that:
A 1
O e

[Hint: use Ezercise 4.2, part c)]



Exercise 4.5. Consider the inhomogeneous Helmholtz equation on R3:

—Ap+ K= f (2)
where f € .. Show that there exists a unique ¢ € .% satisfying (2) given by:

o) = | S~ vy

where
eiklw‘

G(z) = el
[Hint: first derive an equation satisfied by <Z>]
Exercise 4.6. Verify that if f € L] . is such that T € ., then:
7Ty =Try, and Ty =Ty
Exercise 4.7. Let f : R — R be the sign function

=" 150
and define fr(x) = f(2)1_g g)(2).

a) Sketch fr(x).

b) Show that:
TfR—)Tf in .7 as R — oo.
c¢) Show that:

fR(f) _ 2Z,COSR€§ -1

d) For ¢ € .7, show that:
[¢] = —2i /OOO Mdm +2i /000 <¢(az)¢(m)> cos Rxdx

X X

Ty,

e) By applying the Riemann-Lebesgue Lemma, or otherwise, show that for any ¢ € .7

/ Y (x) cos Redx — 0
0

as R — oo.

f) Deduce that

— 1
T; = —2iP.V. ()
T

g) Write down TE, where H is the Heaviside function:

0 xr <0
H(x>:{l x>0
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Exercise 5.1. Suppose v € &'(R") and let:

Show that if ¢ € Z(R"™) with supp ¢ C K for some compact K C R™ then

ulg] = Tyv(d],

geA

for some finite set A C Z™ which depends only on K. Deduce that u defines a distribution.

Exercise 5.2. Recall that for z € R":

n
llally =D lail
i=1

For k € N set: ) )
a={sezib-J <ol <r+ ]

a) Show that:
#Qr = 2k+1)" - (2k—-1)"
so that #Q < c¢(1 + k)" for some ¢ > 0.

b) By applying the Cauchy-Schwartz identity to estimate a - b for @ = (1,...,1) and
b=(lg1],---,|gn|), deduce that:

llglly < vnlgl

¢) Show that there exists a constant C' > 0, depending only on n such that:

5 L ey
(T+lgh = &R

g€Z™;||g|l, <K

holds for all K € N. Deduce that:

1
Y ey <0
n+1
2 {1+

Exercise 5.3. Show that if ¢, satisfy:
legl < K(1+1g)Y

Z Cg(sgﬂ—g

gezr

for some K > 0 and N € N, then:

converges in ..



p
loc.

Exercise 5.4. Suppose f € L, (R"™) is a periodic function. Fix € > 0, and let:

1
Q={zeR": |z <1,j=1,...,n}, q:{azeR”:|xj]<2,j:1,...,n}

a) Show that there exists h. € C*°(R") with:

supp he C @

such that:
1fLg = hell pogny <€

j;:: j{: TQhe

gEL™

Define

b) Show that f. is smooth and periodic.

¢) Show that there exists a constant ¢, depending only on 7 such that:
‘V_ﬂMM@<%6
Exercise 5.5. Suppose that f: R — R is given by:

f(z) ==z for |z| < L

fla+1) = f(a).

57
Show that: .
i(=1)" o (=nm+t
f(z) = Z T T = Z = sin(2mnx),
neZ,n#0 n=1

with convergence in L? _ (R).

Exercise 5.6. Suppose f : R — R is given by:

-1 —L<x<o0
_ 2 = _
flx) { 1 0<x<% , flx+1) = f(x).
a) Show that:
1 2 orin+1)z _ 4 1 .
- 2r(2n+1
flx) = p n—g_ 5+ 16 - ngzo T sin [27(2n + 1)z]

With convergence in L2  (R").

loc.

Define the partial sum:

N-1

Sn(z) = 8 Z;) m sin [27(2n + 1)2]



b) Show that:
+ N-1

Sn(z) = 8/0 Z cos [2m(2n + 1)t] dt.

n=0

c¢) Show that:

cos [2m(2n + 1)t] sin 27t = % (sin [27(2n + 2)t] — sin [47nt])

And deduce: % gin 4o V2
sin 47
= ———dt
Sn (@) 8/0 2sin 27t
d) Show that the first local maximum of Sy occurs at z = ﬁ, and:

1
1 iN sin4dnw Nt 2 [Tsins
Sy|— ) >8 —dt = — ds ~1.179...
N <4N> - /0 4mt 7r/0 s

e) Conclude that the sum in part a) does not converge uniformly.

This lack of uniform convergence of a Fourier series at a point of discontinuity is known
as Gibbs Phenomenon.

Exercise 5.7. (*) Suppose that A = {\1,... A, } is a basis for R”. We define the lattice
generated by A to be:

A= ZZj)\j 175 W/
j=1

Define the fundamental cell:

n
1
— A | < =
gAa ;137] j ¢zl )

We say that u € 2'(R"™) is A—periodic if:
TgU = U for all g € A.

a) Show that there exists ¢ € C§°(2¢a) such that ¢ > 0 and

Z g = 1.
geA
b) Show that if u € 2'(R™) is A—periodic and 1), 1" are both as in part a), then
1 1

mﬂﬂﬂ = mU[W] =: M(u)



c¢) Define the dual lattice by:
AN ={zeR":g-z€2rZ, Vg A}

Show that there exists a basis A* = {A],... A} } such that A} - A, = dji,, and A is the
lattice induced by A*.

d) Show that if g € A* then e, is A—periodic.

e) Show that if u € 2'(R™) is A—periodic, then:

= Z gy

geN*
for some ¢, € C satisfying |c,| < K(1 + |g|)" for some K >0, N € Z.

f) Show that if u € 2'(R™) is A—periodic, then:

U= Z dgTe,

geEA*
where |d,| < K(1+ |g|)" for some K >0, N € Z are given by:
dg = M(e_gu)
Exercise 5.8. Suppose s > 0.
a) Show that . C H*(R").
b) Suppose f € H*(R™). Show that given € > 0 there exists f. € . with:

L = fellgrsmmy <€
Hint: First find g. € . such that

[(f =g+

L2(R™)

c¢) Show that
1 s mny < 11 gre oy
for t > s. Deduce that:

1
W llzaqeo < gy I

Hint: Use Parseval’s formula

d) Show that the derivative D® is a bounded linear map from H***(R") into H*(R"),
where k = |a/.



Exercise 5.9. Suppose that ug € L'(R") N L?(R") and that u(t, x) is the solution of the
heat equation with initial data ug. Explicitly, u is given by:

u(t,x) =

(2m)" / Cig(€)e " e,

for ¢t > 0.

a) Show that:
[lut; M p2ny < lluoll 2 eny »

b) Show that:
u(t,x) = up * Ki(x)

where the heat kernel is given by:

¢) Suppose that ug > 0. Show that v > 0, and:
[t g1 @ny = lwoll g1 gny -
[Hint: Lemma 1.9 may be useful]
Exercise 5.10. Consider the Schréodinger equation:

w = iAu in (0,7) x R™, (3)
u = ug on {0} x R"

Suppose ug € H(R™).
a) Show that (3) admits a unique solution u such that
w € C°([0,7); H*(R")) N C'((0,T); L*(R™)),
whose spatial Fourier-Plancherel transform is given by:
alt, §) = dg(€)e e,

b) Show that:
[t ) g2 mny = [lwoll g2 (rn)

*c¢) For t > 0, let K; € Lj,. (R") be given by:

1 ifa|?
Kt(l‘) - n e 4t 9
(4mit)2
where for n odd we take the usual branch cut so that z% = e'1. For e > 0 set

K(z) = e~ol K, ().



i) Show that Txe — Tk, in .7’ as e — 0.
ii) Show that if R(c) > 0, then:

o2 mo_€
e T Ty = [ e
R g

n

—~ 1 2 —itlg?
Kte(g) = ( > 614:4“6

1 + 4ite

iii) Deduce that

iv) Conclude that:

Tx, = Tg,,

~ . 2
where K; = e el

*d) Suppose that u € .#(R"™). Show that for ¢t > 0:

u(t.o) = [ wol)Kile - y)dy,

and deduce:
ju(t, )| <~ o]
sup |u(t,z)| < —= ||@ol| ;1 /pny -
t>0,z€R" (4mt)2 Li(®)
This type of estimate which shows us that (locally) solutions to the Schrodinger
equation decay in time is known as a dispersive estimate.

Exercise 5.11. Let R? := R3\ {0}, S.r := (-=T,T) x R? and || = r. You may assume
the result that if uw = u(r,t) is radial, we have
5 20
Au(la] 1) = Aulr,t) = Z5(r ) + = 2=(1)

a) Suppose u(z,t) = 2v(r,t) for some function v. Show that u solves the wave equation

on R2 x (0,7T) if and only if v satisfies the one-dimensional wave equation

v
otz or2

on (0,00) x (=T,T).
b) Suppose f,g € C%(R). Deduce that

fr+)  glr=1)

t) =
ulw, t) = £ -

is a solution of the wave equation on S, 7 which vanishes for large |z|.



c¢) Show that if f € C3(R) is an odd function (i.e. f(s) = —f(—s) for all s) then

fr+t)+ f(r—1)
2r

u(z,t) =

extends as a C? function which solves the wave equation on Sy := (=T, T) x R3, with
u(0,t) = f'(t).

*d) By considering a suitable sequence of functions f, or otherwise, deduce that there
exists no constant C independent of u such that the estimate

Sup ([uf + fur]) < C'sup (juf + Ju])
T

3o

holds for all solutions u € C?(St) of the wave equation which vanish for large |x|.
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Exercise A.1. Suppose that AyA2 > 0 and that U C X is a convex subset of a vector
space X. Show that:
MU 4+ XU = (A1 + \o)U.

Exercise A.2. a) Suppose that (S,7) is a topological space, and that /3 is a base for 7.
Show that:

i) If x € S, then there exists some B €  with x € B.

ii) If By, By € 3, then for every x € By N By there exists B € 8 with:

r€eB B C By N Bs.

b) Conversely, suppose that one is given a set S and a collection 5 of subsets of S
satisfying i), 7i) above. Define 7 by:

U et < forall z € U, there exists B € 8 such that z € B and B C U.

i.e. 7 is the set of all unions of elements of 3. Show that (S, 7) is a topological space,
with base 5. We say that 7 is the topology generated by

¢) Suppose that 3, 8’ both satisfy conditions i), i7) above and generate topologies T,
7/ respectively. Moreover, suppose that if B € 3 then for every x € B there exists
B’ € 3’ satisfying

x € B, and B'cB

Then 7 C 7.

Exercise A.3. Suppose (S1,71), (S2,72) and (S3,73) are topological spaces, and that
f 51 x S9 — S5 is a continuous map. Show that for each a € S; and b € Sy, the maps

fa : SQ—>53, fb : 51—>53,
y = fla,y), z— f(z,b),

are continuous.

The condition that f is continuous with respect to the product topology is sometimes
called joint continuity, while the continuity of f,, f? is called separate continuity. Thus
joint continuity implies separate continuity. The converse is not true.

Exercise A.4. Show that the base

Bo=A{(p.q9) :p,q€Q, p<gq},

generates the standard topology on R.

Please send any corrections to c.warnick@imperial.ac.uk



Exercise A.5. Suppose that (5,d) is a metric space. Show that S is Hausdorff with
respect to the metric topology.

Exercise A.6. Let us take X = R", thought of as a vector space over R and define:

3=

(@1, zn)ll, = (2 £ fzaf)r . p2 1
a) Show that (R, || is a normed vector space:
) v

i) First check that the positivity and homogeneity property are satisfied.
ii) Establish the triangle inequality for the special case p = 1.
iii) Next prove Young’s inequality: if a,b € Ry and p,q > 1 with p~! + ¢! =1 then:

al bl
ab < — + —
p q

Hint: sett = p~', consider the function log [taP + (1 — t)b9] and use the concavity
of the logarithm

iv) With p,q > 1 such that p~! + ¢~! = 1, show that if ||z[|, = 1 and ||y[|, =1 then

n
D lwigil < 1.
i=1
Deduce Holder’s inequality:
n
> il < lzll, llyll,,  for all z,y, € R™
i=1
v) Show that
n n
e+ 9l <D lail los +wilt ™ + D lil |z + i~
i=1 i=1
vi) Apply Hélder’s inequality to deduce:

-1
2+l < (llell, + llyll, ) e + Il

and conclude
lz +yll, < llzll, + lyll, -

b) Show that the metric topology of (R™,[|-||,) agrees with the standard topology.
Hint: Use part c) of Exercise A.2

Exercise A.7 (x). Let X = C[0, 1], the set of continuous functions on the closed interval
[0,1]. For f € X, p > 0 define:

uﬂu=(47ﬂmwm);



a) Show that X is a vector space over R, where scalar multiplication and vector addition
are defined pointwise.

b) Establish Holder’s inequality:
fglly < 1711, gl
for p,q > 1 with p~' 4+ ¢~ 1 = 1.

¢) Show that (X, [[-]|,) is a normed space.

d) Suppose p < p’. Show that:
A1, < 111,

e) Let 7, be the metric topology of (X, [|-]|,). Show that if p < p":
Tp C Tpr.

f) Consider the sequence of functions:

ny~1 0<z<i
f”(x>:{ L= l<x<ﬂi
n n — -
wheren =1,2,...
i) Show that f,, € C0,1] and

ptl
1 ’y< p
; — pt+l1)\pr _ ptl
nlgrolonan (T) Y= o
ptl
0 v >

ii) By choosing v carefully, show that if p < p’ then
Tp/ gZ Tp-

Hint: in parts b), c) follow the same steps as for the finite dimensional case in Exercise
A.6.

Exercise A.8. Verify that if (D, s) is a metric space, then the metric topology defines
the same notions of convergence and continuity as the standard definitions for a metric
space.

Exercise A.9. Let (X, 7) be a topological vector space
a) Show that if (x,)22, is a 7-Cauchy sequence, then {x,}2°; is bounded.

n=1

b) Fix a local base 3. Show that a sequence (), is 7-Cauchy if and only if for any
B € 8 we can find an integer N such that

Ty — Ty € B, for all n,m > N.



