
Example Sheet 1 M*P18: Fourier Analysis and Theory of Distributions

Exercise 1.1. Consider the meromorphic function

F (z) =
1

1 + z2

cos [(π − θ)z]
2 sinπz

a) Show that the poles of F (z) occur at z = ±i and z = n, for n ∈ Z, with:

Res[F,±i] = −cosh(π − θ)
4 sinhπ

, Res[F, n] =
cos(nθ)

2π(1 + n2)
.

b) For N ∈ N, let Γ
(N)
i be the curves

Γ
(N)
1 (t) =

(
N +

1

2

)
(1 + it) , −1 ≤ t ≤ 1

Γ
(N)
2 (t) =

(
N +

1

2

)
(−t+ i) , −1 ≤ t ≤ 1

Γ
(N)
3 (t) =

(
N +

1

2

)
(−1− it) , −1 ≤ t ≤ 1

Γ
(N)
4 (t) =

(
N +

1

2

)
(t− i) , −1 ≤ t ≤ 1

and let Γ(N) be the closed contour which results from following Γ1, Γ2, Γ3 and Γ4 in
turn. Sketch Γ(N), together with the locations of the poles of F in the complex plane.

c) Show that if 0 ≤ θ ≤ 2π, then: ∣∣∣∣∫
Γ(N)

F (z)dz

∣∣∣∣ ≤ C

N
,

where C is a fixed constant, independent of N .

d) By applying Cauchy’s residue theorem, show that for 0 ≤ θ ≤ 2π:∣∣∣∣∣cosh(π − θ)
2 sinhπ

−
N∑

n=−N

einθ

1 + n2

∣∣∣∣∣ ≤ C

N
,

and conclude that
cosh(π − θ)

2 sinhπ
=

∞∑
n=−∞

einθ

1 + n2
,

with the sum converging uniformly in θ.
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Exercise 1.2. Suppose that f ∈ C0(R) is a continuous function with period 2π, i.e.
f(θ) = f(θ + 2π). For θ ∈ [0, 2π), define:

ψ(θ) :=

∫ θ

0
f(α)

cosh(π − θ + α)

2 sinhπ
dα+

∫ 2π

θ
f(α)

cosh(−π − θ + α)

2 sinhπ
dα

and extend ψ to a function on R by periodicity: ψ(θ) = ψ(θ + 2π).

a) Show that ψ ∈ C0(R).

b) By directly differentiating the formula, show that:

ψ′(θ) = −
∫ θ

0
f(α)

sinh(π − θ + α)

2 sinhπ
dα−

∫ 2π

θ
f(α)

sinh(−π − θ + α)

2 sinhπ
dα

and show that ψ ∈ C1(R).

c) Differentiating again, show that

ψ′′(θ) = −f(θ) + ψ(θ)

Conclude that ψ ∈ C2(R) is a solution to

−ψ′′(θ) + ψ(θ) = f(θ), θ ∈ R.

Exercise 1.3. Let φ ∈ C2(R) be 2π-periodic, i.e. φ(θ) = φ(θ + 2π), and suppose that φ
satisfies:

−φ′′(θ) + φ(θ) = 0, θ ∈ R.

a) Show that if φ attains a maximum at θ0 ∈ R, then φ(θ0) ≤ 0.

b) Show that if φ attains a minimum at θ0 ∈ R, then φ(θ0) ≥ 0.

c) Show that φ ≡ 0.

d) Conclude that there is at most one ψ ∈ C2(R) satisfying ψ(θ) = ψ(θ+ 2π) and solving:

−ψ′′(θ) + ψ(θ) = f(θ), θ ∈ R,

where f ∈ C0(R) is a given 2π-periodic function.

Exercise 1.4. For t ∈ R let:

χ(t) =

{
0 t ≤ 0

e−
1
t t > 0

a) Show that χ ∈ C∞(R).

b) Show that there exists a function ψ ∈ C∞0 (Rn) such that

i) 0 ≤ ψ ≤ 1
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ii) suppψ ⊂ B2(0)

iii) ψ(x) = 1 for |x| ≤ 1.

Hint: First construct a positive smooth function χ̃ : R→ [0, 1] such that

χ̃(t) =

{
0 t < −1
1 t > 1

Exercise 1.5. a) Suppose φ ∈ E (Rn). Let {xl}∞l=1 ⊂ Rn be a sequence with xl → 0.
Show that

τxlφ→ φ, as l→∞.

in E (Rn), where τx is the translation operator defined in equation (1.2).

b) Suppose φ ∈ E (Rn), show that

∆h
i φ→ Diφ, as h→ 0,

in E (Rn), where ∆h
i is the difference quotient defined in Example 2.

Exercise 1.6. a) Show that S is a vector subspace of E (Rn). Show that if {φj}∞j=1 is a
sequence of rapidly decreasing functions which tends to zero in S , then φj → 0 in
E (Rn).

b) Show that D(Rn) is a vector subspace of S . Show that if {φj}∞j=1 is a sequence of
compactly supported functions which tends to zero in D(Rn) then φj → 0 in S .

c) Give an example of a sequence {φj}∞j=1 ⊂ C∞0 (Rn) such that

i) φj → 0 in S , but φj has no limit in D(Rn).

ii) φj → 0 in E (Rn), but φj has no limit in S .

Exercise 1.7. a) Suppose φ ∈ S . Let {xl}∞l=1 ⊂ Rn be a sequence with xl → 0. Show
that

τxlφ→ φ, as l→∞.

in S , where τx is the translation operator defined in equation (1.2).

b) Suppose φ ∈ S , show that

∆h
i φ→ Diφ, as h→ 0,

in S , where ∆h
i is the difference quotient defined in Example 2.
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Exercise 2.1 (*). Suppose that we work over Rn and that f, g, h ∈ S .

a) Show that for any multi-index α, we have that Dαf ∈ Lp(Rn) for 1 ≤ p <∞, i.e. that

||Dαf ||Lp(Rn) =

(∫
Rn
|Dαf(x)|p dx

) 1
p

<∞.

b) Define
F : Rn × Rn,

(x, y) 7→ f(x)g(y − x).

Show that F ∈ L1(Rn × Rn).

c) For each x ∈ Rn, set

Gx : Rn × Rn,
(y, z) 7→ f(y)g(z)h(x− y − z).

Show that Gx ∈ L1(Rn × Rn).

Exercise 2.2. Show that Theorem 1.10 holds under the alternative hypotheses:

a) f ∈ L1(Rn), g ∈ Ck(Rn) with supRn |Dαg| <∞ for all |α| ≤ k.

b) f ∈ L1(Rn) with supp f compact, g ∈ Ck(Rn).

Exercise 2.3. a) Prove the following identities for r, s > 0 and x ∈ Rn:

i) Br(x) +Bs(0) = Br+s(x)

ii) Br(x) +Bs(0) = Br+s(x)

iii) Br(x) +Bs(0) = Br+s(x)

Suppose that A,B ⊂ Rn. Show that:

b) If one of A or B is open, then so is A+B.

c) If A and B are both bounded, then so is A+B.

d) If A is closed and B is compact, then A+B is closed.

e) If A and B are both compact, then so is A+B.

Exercise 2.4. Show that if f ∈ Ck0 (Rn) and g ∈ C l0(Rn) then f ?g ∈ Ck+l
0 (Rn). Conclude

that D(Rn) is closed under convolution.

Exercise 2.5 (*). Suppose that F : Rn×Rn → R is a positive integrable simple function,
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a) Show that Minkowski’s integral inequality holds for the case p = 1:∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣ dy ≤ ∫
Rn

∫
Rn
|F (x, y)| dydx

b) Next prove Young’s inequality: if a, b ∈ R+ and p, q > 1 with p−1 + q−1 = 1 then:

ab ≤ ap

p
+
bq

q

Hint: set t = p−1, consider the function log [tap + (1− t)bq] and use the concavity of
the logarithm

c) With p, q > 1 such that p−1 + q−1 = 1, show that if ||f ||p = 1 and ||g||q = 1 then∫
Rn
|f(x)g(x)| dx ≤ 1.

Deduce Hölder’s inequality:∫
Rn
|f(x)g(x)| dx ≤ ||f ||p ||g||q , for all f ∈ Lp(Rn), g,∈ Lq(Rn).

d) Set G(y) =
(∫

Rn F (x, y)dx
)p−1

i) Show that if q = p
p−1 :

||G||Lq(Rn) =

∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p−1

Lp(Rn)

ii) Show that: ∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p
Lp(Rn)

=

∫
Rn

(∫
Rn
G(y)F (x, y)dy

)
dx

iii) Applying Hölder’s inequality, deduce:∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p
Lp(Rn)

≤ ||G||Lq(Rn)

∫
Rn
||F (x, ·)||Lp(Rn) dx

e) Deduce that Minkowski’s integral inequality[∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣p dy] 1
p

≤
∫
Rn

[∫
Rn
|F (x, y)|p dy

] 1
p

dx

holds for any measurable function F : Rn × Rn → C, where 1 ≤ p <∞.

Exercise 2.6. a) Show that δx, as defined in Example 7 is continuous and linear, hence
a distribution. Find the order.



3

b) Show that Tf , as defined in Example 7 is continuous and linear, hence a distribution.
Find the order.

c) By constructing a suitable sequence of smooth functions show that the order of P.V.
(

1
x

)
is one.

Exercise 2.7. Suppose f ∈ L1
loc.(Ω). Take φε as in Theorem 1.13, and define for x with

d(x, ∂Ω) ≥ ε:
fε(x) := Tf

[
τxφ̌ε

]
.

Show that for any compact K ⊂ Ω:

||fε − f ||L1(K) → 0

as ε→ 0.
[Hint: follow the proof of Theorem 2.2, but use part b) of Theorem 1.13]

Exercise 2.8. a) Show that if f1, f2 ∈ C0(Ω) and a ∈ C∞(Ω), then

aTf1 + Tf2 = Taf1+f2

b) Show that if f ∈ Ck(Ω) then
DαTf = TDαf

for |α| ≤ k. Deduce that ι ◦Dα = Dα ◦ ι.

c) Deduce that if f ∈ Ck(Ω) then∑
|α|≤k

aαD
αTf = TLf .

where
Lf =

∑
|α|≤k

aαD
αf

Exercise 2.9. a) Show that for f, g ∈ C0
0 (Rn):

Tf?g = Tf ? Tg.

b) Show that convolution is linear in both of its arguments, i.e. if ui ∈ D ′(Rn) and
u3, u4 have compact support then

(u1 + au2) ? u3 = u1 ? u3 + au2 ? u3

and
u1 ? (u3 + au4) = u1 ? u3 + au1 ? u4

where a ∈ C is a constant.

Exercise 2.10. a) Show that if φ ∈ D(Rn) then

δ0 ? φ = φ

b) Show that if u ∈ D ′(Rn) has compact support, then

δ0 ? u = u
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Exercise 3.1. a) Suppose that {φj}∞j=1 ⊂ E (Ω) is a sequence such that φj → φ in E (Ω),
and χ ∈ D(Ω). Show that

χφj → χφ in D(Ω).

b) Show that if ψ ∈ E (Ω), then there exists a sequence {φj}∞j=1 ⊂ D(Ω) such that φj → ψ
in E (Ω).
[Hint: Take an exhaustion of Ω by compact sets and apply Lemma 1.14]

Exercise 3.2. a) Prove Lemma 2.11.
[Hint: You should argue in a similar fashion to the proof of Lemma 2.9]

b) Show that we have the inclusions:

E ′(Rn) ⊂ S ′ ⊂ D ′(Rn).

Exercise 3.3. Let {aj}∞j=1 ⊂ R be a sequence of real numbers. Define for φ ∈ C∞(R):

u[φ] =
∞∑
j=1

ajφ(j)

provided that the sum converges. Give necessary and sufficient conditions on aj such
that:

a) u ∈ E ′(R).

b) u ∈ S ′.

c) u ∈ D ′(R).

Exercise 3.4. For ξ ∈ Rn, define eξ(x) = eiξ·x. Show that Teξ ∈ S ′, and that:

Teξ → 0, as |ξ| → ∞

in the topology1 of S ′.

Exercise 3.5. Calculate the Fourier transform of the following functions f ∈ L1(R):

a) f(x) =
sinx

1 + x2
.

b) f(x) =
1

ε2 + x2
, for ε > 0 a constant.

c) f(x) =

√
σ

t
e−σ

(x−y)2
t , where σ > 0, t > 0 and y are constants.

1This is defined precisely as the topology of D ′(Ω), mutatis mutandis.
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*d) f(x) =
1

coshx
.

Exercise 3.6. Suppose f ∈ C1(Rn) and that f,Djf ∈ L1(Rn). Fix ε > 0. Show that
there exists fε ∈ C1

0 (Rn) such that

||f − fε||L1(Rn) + ||Djf −Djfε||L1(Rn) <
ε

2
.

[Hint: First construct, for large R, a smooth cut-off function χR(x) with χR(x) = 1 for
|x| < R, χR(x) = 0 for |x| > 2R and |DχR(x)| < C, where C is independent of R.]

Exercise 3.7. Suppose f ∈ L1(Rn), with supp f ⊂ BR(0) for some R > 0.

a) Show that f̂ ∈ C∞(Rn) and for any multi-index:

sup
ξ∈Rn

∣∣∣Dαf̂(ξ)
∣∣∣ ≤ R|α| ||f ||L1(Rn)

b) Show that f̂ is real analytic, with an infinite radius of convergence, i.e.:

f̂(ξ) =
∑
α

Dαf̂(0)
ξα

α!

holds for all ξ ∈ Rn.

c) Show that if f̂(ξ) vanishes on an open set, it must vanish everywhere.
[Hint: use part i) of Lemma 3.2]

You may assume the following form of Taylor’s theorem. Suppose g ∈ Ck+1(Br(0)). Then
for x ∈ Br(0):

g(x) =
∑
|α|≤k

Dαg(0)
ξα

α!
+

∑
|β|=k+1

Rβ(x)xβ

where the remainder Rβ(x) satisfies the following estimate in Br(0):

|Rβ(x)| ≤ 1

β!
max
|α|=|β|

max
y∈Br(0)

|Dαg(y)| .

See §A.1 of the notes for notation.
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Exercise 4.1. Consider the following ODE problem. Given f : R→ C, find φ such that:

− φ′′ + φ = f. (1)

a) Show that if f ∈ S , there is a unique φ ∈ S solving (1), and give an expression for φ̂.

b) Show that

φ(x) =

∫
R
f(y)G(x− y)dy

where

G(x) =

{
1
2e
x x < 0,

1
2e
−x x ≥ 0.

Exercise 4.2. Suppose f ∈ L1(R3) is a radial function, i.e. f(Rx) = f(x), whenever
R ∈ SO(3) is a rotation.

a) Show that f̂ is radial.

b) Suppose that ξ = (0, 0, ζ). By writing the Fourier integral in polar coordinates, show
that

f̂(ξ) =

∫ ∞
r=0

∫ π

θ=0

∫ 2π

φ=0
f(r)e−iζr cos θr2 sin θdθdrdφ.

c) Making the substitution s = cos θ, and using the fact that f̂ is radial, deduce:

f̂(ξ) = 4π

∫ ∞
0

f(r)
sin r |ξ|
r |ξ|

r2dr

for any ξ ∈ Rn.

Exercise 4.3. (*) Suppose that f, g ∈ L2(Rn), and denote the Fourier-Plancherel trans-
form by F . You may assume any results already established for the Fourier transform.

a) Show that

(f, g) =
1

(2π)n
(
F [g],F [g]

)
.

b) Recall that f̌(y) = f(−y). Show that:

F
[
F [f ]

]
= (2π)nf̌ .

Hence, or otherwise, deduce that F : L2(Rn) → L2(Rn) is a bijection, and that
F−1

: L2(Rn)→ L2(Rn) is a bounded linear map.
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c) Show that:

F [f ](ξ) = lim
R→∞

∫
BR(0)

f(x)e−ix·ξdx

with convergence in the sense of L2(Rn).

d) Suppose that f ∈ C1(Rn) and f,Djf ∈ L2(Rn). Show that ξjF [f ](ξ) ∈ L2(Rn) and:

F [Djf ](ξ) = iξjF [f ](ξ)

e) For x ∈ R let:

f(x) =
sinx

x

i) Show that f ∈ L2(R).

ii) Show that:

F [f ](ξ) =

{
π −1 < ξ < 1,
0 |ξ| ≥ 1.

f) i) Show that for all x ∈ Rn:

|f ? g(x)| ≤ ||f ||L2(Rn) ||g||L2(Rn) .

ii) Show that f ? g ∈ C0(Rn) and:

f ? g = F−1
[
F [f ] · F [g]

]
where:

F−1[f̂ ](x) =
1

(2π)n

∫
Rn
f̂(ξ)eiξ·xdξ.

[Hint for parts a), b), d), f): approximate by Schwartz functions]

Exercise 4.4. Work in R3. For k > 0, define the function:

G(x) =
e−k|x|

4π |x|

a) Show that G ∈ L1(R3).

b) Show that:

Ĝ(ξ) =
1

|ξ|2 + k2

[Hint: use Exercise 4.2, part c)]
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Exercise 4.5. Consider the inhomogeneous Helmholtz equation on R3:

−∆φ+ k2φ = f (2)

where f ∈ S . Show that there exists a unique φ ∈ S satisfying (2) given by:

φ(x) =

∫
R3

f(y)G(x− y)dy,

where

G(x) =
e−k|x|

4π |x|
.

[Hint: first derive an equation satisfied by φ̂]

Exercise 4.6. Verify that if f ∈ L1
loc. is such that Tf ∈ S ′, then:

τxTf = Tτxf , and Ťf = Tf̌

Exercise 4.7. Let f : R→ R be the sign function

f(x) =

{
−1 x < 0
1 x ≥ 0

and define fR(x) = f(x)1[−R,R](x).

a) Sketch fR(x).

b) Show that:
TfR → Tf in S ′ as R→∞.

c) Show that:

f̂R(ξ) = 2i
cosRξ − 1

ξ

d) For φ ∈ S , show that:

Tf̂R [φ] = −2i

∫ ∞
0

φ(x)− φ(−x)

x
dx+ 2i

∫ ∞
0

(
φ(x)− φ(−x)

x

)
cosRxdx

e) By applying the Riemann-Lebesgue Lemma, or otherwise, show that for any ψ ∈ S :∫ ∞
0

ψ(x) cosRxdx→ 0

as R→∞.

f) Deduce that

T̂f = −2iP.V.

(
1

x

)
g) Write down T̂H , where H is the Heaviside function:

H(x) =

{
0 x < 0
1 x ≥ 0
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Exercise 5.1. Suppose v ∈ E ′(Rn) and let:

u =
∑
g∈Zn

τgv.

Show that if φ ∈ D(Rn) with suppφ ⊂ K for some compact K ⊂ Rn then

u[φ] =
∑
g∈A

τgv[φ],

for some finite set A ⊂ Zn which depends only on K. Deduce that u defines a distribution.

Exercise 5.2. Recall that for x ∈ Rn:

||x||1 :=
n∑
i=1

|xi| .

For k ∈ N set:

Qk =

{
g ∈ Zn : k − 1

2
≤ ||g||1 < k +

1

2

}
a) Show that:

#Qk = (2k + 1)n − (2k − 1)n

so that #Qk ≤ c(1 + k)n−1 for some c > 0.

b) By applying the Cauchy-Schwartz identity to estimate a · b for a = (1, . . . , 1) and
b = (|g1| , . . . , |gn|), deduce that:

||g||1 ≤
√
n |g|

c) Show that there exists a constant C > 0, depending only on n such that:

∑
g∈Zn;||g||1≤K

1

(1 + |g|)n+1
≤ 1 + C

K∑
k=1

1

k2

holds for all K ∈ N. Deduce that:∑
g∈Zn

1

(1 + |g|)n+1
<∞.

Exercise 5.3. Show that if cg satisfy:

|cg| ≤ K(1 + |g|)N

for some K > 0 and N ∈ N, then: ∑
g∈Zn

cgδ2πg

converges in S ′.
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Exercise 5.4. Suppose f ∈ Lploc.(R
n) is a periodic function. Fix ε > 0, and let:

Q = {x ∈ Rn : |xj | < 1, j = 1, . . . , n}, q =

{
x ∈ Rn : |xj | <

1

2
, j = 1, . . . , n

}
a) Show that there exists hε ∈ C∞(Rn) with:

supphε ⊂ Q

such that:
||f1q − hε||Lp(Rn) < ε.

Define
fε =

∑
g∈Zn

τghε

b) Show that fε is smooth and periodic.

c) Show that there exists a constant cn depending only on n such that:

||f − fε||Lp(q) < cnε.

Exercise 5.5. Suppose that f : R→ R is given by:

f(x) = x for |x| < 1

2
, f(x+ 1) = f(x).

Show that:

f(x) =
∑

n∈Z,n6=0

i(−1)n

2πn
e2πinx =

∞∑
n=1

(−1)n+1

nπ
sin(2πnx),

with convergence in L2
loc.(R).

Exercise 5.6. Suppose f : R→ R is given by:

f(x) =

{
−1 −1

2 < x ≤ 0
1 0 < x ≤ 1

2

, f(x+ 1) = f(x).

a) Show that:

f(x) =
1

πi

∞∑
n=−∞

2

2n+ 1
e2πi(2n+1)x =

4

π

∞∑
n=0

1

2n+ 1
sin [2π(2n+ 1)x]

With convergence in L2
loc.(Rn).

Define the partial sum:

SN (x) = 8

N−1∑
n=0

1

2π(2n+ 1)
sin [2π(2n+ 1)x] .
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b) Show that:

SN (x) = 8

∫ x

0

N−1∑
n=0

cos [2π(2n+ 1)t] dt.

c) Show that:

cos [2π(2n+ 1)t] sin 2πt =
1

2
(sin [2π(2n+ 2)t]− sin [4πnt])

And deduce:
SN (x) = 8

∫ x

0

sin 4πNt

2 sin 2πt
dt.

d) Show that the first local maximum of SN occurs at x = 1
4N , and:

SN

(
1

4N

)
≥ 8

∫ 1
4N

0

sin 4πNt

4πt
dt =

2

π

∫ π

0

sin s

s
ds ' 1.179 . . .

e) Conclude that the sum in part a) does not converge uniformly.

This lack of uniform convergence of a Fourier series at a point of discontinuity is known
as Gibbs Phenomenon.

Exercise 5.7. (*) Suppose that λ = {λ1, . . . λn} is a basis for Rn. We define the lattice
generated by λ to be:

Λ =


n∑
j=1

zjλj : zj ∈ Z

 .

Define the fundamental cell:

qΛ =


n∑
j=1

xjλj : |xj | <
1

2

 .

We say that u ∈ D ′(Rn) is Λ−periodic if:

τgu = u for all g ∈ Λ.

a) Show that there exists ψ ∈ C∞0 (2qΛ) such that ψ ≥ 0 and∑
g∈Λ

τgψ = 1.

b) Show that if u ∈ D ′(Rn) is Λ−periodic and ψ, ψ′ are both as in part a), then

1

|qΛ|
u[ψ] =

1

|qΛ|
u[ψ′] =: M(u)
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c) Define the dual lattice by:

Λ∗ := {x ∈ Rn : g · x ∈ 2πZ, ∀g ∈ Λ}

Show that there exists a basis λ∗ = {λ∗1, . . . λ∗n} such that λ∗j · λk = δjk, and Λ∗ is the
lattice induced by λ∗.

d) Show that if g ∈ Λ∗ then eg is Λ−periodic.

e) Show that if u ∈ D ′(Rn) is Λ−periodic, then:

û =
∑
g∈Λ∗

cgδg

for some cg ∈ C satisfying |cg| ≤ K(1 + |g|)N for some K > 0, N ∈ Z.

f) Show that if u ∈ D ′(Rn) is Λ−periodic, then:

u =
∑
g∈Λ∗

dgTeg

where |dg| ≤ K(1 + |g|)N for some K > 0, N ∈ Z are given by:

dg = M(e−gu)

Exercise 5.8. Suppose s ≥ 0.

a) Show that S ⊂ Hs(Rn).

b) Suppose f ∈ Hs(Rn). Show that given ε > 0 there exists fε ∈ S with:

||f − fε||Hs(Rn) < ε.

Hint: First find gε ∈ S such that∣∣∣∣∣∣(f̂ − gε)(1 + |ξ|)s
∣∣∣∣∣∣
L2(Rn)

< ε.

c) Show that
||f ||Hs(Rn) ≤ ||f ||Ht(Rn)

for t ≥ s. Deduce that:

||f ||L2(Rn) ≤
1

(2π)n
||f ||Hs(Rn)

Hint: Use Parseval’s formula

d) Show that the derivative Dα is a bounded linear map from Hs+k(Rn) into Hs(Rn),
where k = |α|.
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Exercise 5.9. Suppose that u0 ∈ L1(Rn)∩L2(Rn) and that u(t, x) is the solution of the
heat equation with initial data u0. Explicitly, u is given by:

u(t, x) =
1

(2π)n

∫
Rn
û0(ξ)e−t|ξ|

2

eiξ·xdξ,

for t > 0.

a) Show that:
||u(t, ·)||L2(Rn) ≤ ||u0||L2(Rn) ,

b) Show that:
u(t, x) = u0 ? Kt(x)

where the heat kernel is given by:

Kt(x) =
1

(4πt)
n
2

e−
|x|2
4t .

c) Suppose that u0 ≥ 0. Show that u ≥ 0, and:

||u(t, ·)||L1(Rn) = ||u0||L1(Rn) .

[Hint: Lemma 1.9 may be useful]

Exercise 5.10. Consider the Schrödinger equation:{
ut = i∆u in (0, T )× Rn,
u = u0 on {0} × Rn (3)

Suppose u0 ∈ H2(Rn).

a) Show that (3) admits a unique solution u such that

u ∈ C0([0, T );H2(Rn)) ∩ C1((0, T );L2(Rn)),

whose spatial Fourier-Plancherel transform is given by:

û(t, ξ) = û0(ξ)e−it|ξ|
2

.

b) Show that:
||u(t, ·)||H2(Rn) = ||u0||H2(Rn)

*c) For t > 0, let Kt ∈ L1
loc.(Rn) be given by:

Kt(x) =
1

(4πit)
n
2

e
i|x|2
4t ,

where for n odd we take the usual branch cut so that i
1
2 = ei

π
4 . For ε > 0 set

Kε
t (x) = e−ε|x|

2

Kt(x).
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i) Show that TKε
t
→ TKt in S ′ as ε→ 0.

ii) Show that if <(σ) > 0, then:∫
R
e−σx

2−ixξdx =

√
π

σ
e−

ξ2

4σ .

iii) Deduce that

K̂ε
t (ξ) =

(
1

1 + 4itε

)n
2

e
−it|ξ|2
1+4itε

iv) Conclude that:
T̂Kt = TK̃t ,

where K̃t = e−it|ξ|
2

.

*d) Suppose that u ∈ S (Rn). Show that for t > 0:

u(t, x) =

∫
Rn
u0(y)Kt(x− y)dy,

and deduce:
sup

t>0,x∈Rn
|u(t, x)| ≤ 1

(4πt)
n
2

||û0||L1(Rn) .

This type of estimate which shows us that (locally) solutions to the Schrödinger
equation decay in time is known as a dispersive estimate.

Exercise 5.11. Let R3
∗ := R3 \ {0}, S∗,T := (−T, T )×R3

∗ and |x| = r. You may assume
the result that if u = u(r, t) is radial, we have

∆u(|x| , t) = ∆u(r, t) =
∂2u

∂r2
(r, t) +

2

r

∂u

∂r
(r, t)

a) Suppose u(x, t) = 1
rv(r, t) for some function v. Show that u solves the wave equation

on R3
∗ × (0, T ) if and only if v satisfies the one-dimensional wave equation

−∂
2v

∂t2
+
∂2v

∂r2
= 0

on (0,∞)× (−T, T ).

b) Suppose f, g ∈ C2
c (R). Deduce that

u(x, t) =
f(r + t)

r
+
g(r − t)

r

is a solution of the wave equation on S∗,T which vanishes for large |x|.
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c) Show that if f ∈ C3
c (R) is an odd function (i.e. f(s) = −f(−s) for all s) then

u(x, t) =
f(r + t) + f(r − t)

2r

extends as a C2 function which solves the wave equation on ST := (−T, T )×R3, with

u(0, t) = f ′(t).

*d) By considering a suitable sequence of functions f , or otherwise, deduce that there
exists no constant C independent of u such that the estimate

sup
ST

(|u|+ |ut|) ≤ C sup
Σ0

(|u|+ |ut|)

holds for all solutions u ∈ C2(ST ) of the wave equation which vanish for large |x|.
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Exercise A.1. Suppose that λ1λ2 ≥ 0 and that U ⊂ X is a convex subset of a vector
space X. Show that:

λ1U + λ2U = (λ1 + λ2)U.

Exercise A.2. a) Suppose that (S, τ) is a topological space, and that β is a base for τ .
Show that:

i) If x ∈ S, then there exists some B ∈ β with x ∈ B.

ii) If B1, B2 ∈ β, then for every x ∈ B1 ∩B2 there exists B ∈ β with:

x ∈ B B ⊂ B1 ∩B2.

b) Conversely, suppose that one is given a set S and a collection β of subsets of S
satisfying i), ii) above. Define τ by:

U ∈ τ ⇐⇒ for all x ∈ U, there exists B ∈ β such that x ∈ B and B ⊂ U.

i.e. τ is the set of all unions of elements of β. Show that (S, τ) is a topological space,
with base β. We say that τ is the topology generated by β

c) Suppose that β, β′ both satisfy conditions i), ii) above and generate topologies τ ,
τ ′ respectively. Moreover, suppose that if B ∈ β then for every x ∈ B there exists
B′ ∈ β′ satisfying

x ∈ B′, and B′ ⊂ B

Then τ ⊂ τ ′.

Exercise A.3. Suppose (S1, τ1), (S2, τ2) and (S3, τ3) are topological spaces, and that
f : S1 × S2 → S3 is a continuous map. Show that for each a ∈ S1 and b ∈ S2, the maps

fa : S2 → S3,
y 7→ f(a, y),

f b : S1 → S3,
x 7→ f(x, b),

are continuous.
The condition that f is continuous with respect to the product topology is sometimes

called joint continuity, while the continuity of fa, f b is called separate continuity. Thus
joint continuity implies separate continuity. The converse is not true.

Exercise A.4. Show that the base

βQ = {(p, q) : p, q ∈ Q, p < q} ,

generates the standard topology on R.

Please send any corrections to c.warnick@imperial.ac.uk
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Exercise A.5. Suppose that (S, d) is a metric space. Show that S is Hausdorff with
respect to the metric topology.

Exercise A.6. Let us take X = Rn, thought of as a vector space over R and define:

||(x1, . . . , xn)||p = (|x1|p + . . . |xn|p)
1
p , p ≥ 1.

a) Show that (Rn, ||·||p) is a normed vector space:

i) First check that the positivity and homogeneity property are satisfied.

ii) Establish the triangle inequality for the special case p = 1.

iii) Next prove Young’s inequality: if a, b ∈ R+ and p, q > 1 with p−1 + q−1 = 1 then:

ab ≤ ap

p
+
bq

q

Hint: set t = p−1, consider the function log [tap + (1− t)bq] and use the concavity
of the logarithm

iv) With p, q > 1 such that p−1 + q−1 = 1, show that if ||x||p = 1 and ||y||q = 1 then

n∑
i=1

|xiyi| ≤ 1.

Deduce Hölder’s inequality:
n∑
i=1

|xiyi| ≤ ||x||p ||y||q , for all x, y,∈ Rn.

v) Show that

||x+ y||pp ≤
n∑
i=1

|xi| |xi + yi|p−1 +

n∑
i=1

|yi| |xi + yi|p−1

vi) Apply Hölder’s inequality to deduce:

||x+ y||pp ≤
(
||x||p + ||y||p

)
||x+ y||p−1

p

and conclude
||x+ y||p ≤ ||x||p + ||y||p .

b) Show that the metric topology of (Rn, ||·||p) agrees with the standard topology.
Hint: Use part c) of Exercise A.2

Exercise A.7 (?). Let X = C[0, 1], the set of continuous functions on the closed interval
[0, 1]. For f ∈ X, p ≥ 0 define:

||f ||p =

(∫ 1

0
|f(x)|p dx

) 1
p
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a) Show that X is a vector space over R, where scalar multiplication and vector addition
are defined pointwise.

b) Establish Hölder’s inequality:

||fg||1 ≤ ||f ||p ||g||q

for p, q > 1 with p−1 + q−1 = 1.

c) Show that (X, ||·||p) is a normed space.

d) Suppose p ≤ p′. Show that:
||f ||p ≤ ||f ||p′

e) Let τp be the metric topology of (X, ||·||p). Show that if p ≤ p′:

τp ⊂ τp′ .

f) Consider the sequence of functions:

fn(x) =

{
nγ−1 0 ≤ x < 1

n
1
nx
−γ 1

n ≤ x ≤ 1

where n = 1, 2, . . .

i) Show that fn ∈ C[0, 1] and

lim
n→∞

||fn||p =


0 γ < p+1

p(
p+1
p

) 1
p

γ = p+1
p

∞ γ > p+1
p

ii) By choosing γ carefully, show that if p < p′ then

τp′ 6⊂ τp.

Hint: in parts b), c) follow the same steps as for the finite dimensional case in Exercise
A.6.

Exercise A.8. Verify that if (D, s) is a metric space, then the metric topology defines
the same notions of convergence and continuity as the standard definitions for a metric
space.

Exercise A.9. Let (X, τ) be a topological vector space

a) Show that if (xn)∞n=1 is a τ -Cauchy sequence, then {xn}∞n=1 is bounded.

b) Fix a local base β̇. Show that a sequence (xn)∞n=1 is τ -Cauchy if and only if for any
B ∈ β̇ we can find an integer N such that

xn − xm ∈ B, for all n,m ≥ N.


