Example Sheet 1 M*P18: Fourier Analysis and Theory of Distributions

Exercise 1.1. Consider the meromorphic function

1 cos[(m—0)z]
Fz) = 1+22 2sinmz

a) Show that the poles of F(z) occur at z = +i and z = n, for n € Z, with:

cos(nd)

_ cosh(r — 0) B
- 21(1+n?)

Res[F, &i] = 4sinh

, Res[F, n]

Solution As a ratio of holomorphic functions, F' is clearly meromorphic. Poles occur
when the function (1 + 2?)sin7z has a zero. This can occur when either 1 + 22 = 0,
which happens if and only if 2 = +i or alternatively when sin 7z = 0, which occurs
precisely when z € Z. We have

F(2) 1 cos[(m—0)z] 1 1 cos|(m—0)z]
z) = f—
14+ 22 2sinwz 2Fiz+i 2sinmz
so that )
F(z) = G
() = G (2
where

1 cos|[(m—0)z]
zd+i1 2sin7z

Gi(z) =

is holomorphic at z = 4+4. Thus

L . 1 cos[(m—0)i]  cosh(m—0)
ReslFy 0] = Gu() = 5 Sgnt(m) —  dsimbr
b) For N € N, let FZ(N) be the curves
1
rgN)(t):<N+2> (1+it), —1<t<1
1
rgN)(t):<N+2) (—t+1), —lstsl
) () — 1 :
5 () =(N+g)(=1-i), —1<t<1
V) gy — 1 :
1 )= (N+g5|t-1), —1<t<1

and let TY) be the closed contour which results from following I'y, T'9, I's and 'y in
turn. Sketch T™) | together with the locations of the poles of F in the complex plane.



Solution The contour is a square centred at the origin of side length 2N + 1, traversed
in an anti-clockwise direction. There are poles at ¢ and along the real axis at integer
points. The contour crosses the real axis exactly half-way between a pair of poles.

Show that if 0 < 6 < 27, then:

F(2)dz

C
S N7
() N

where C'is a fixed constant, independent of N.

Solution Let us write w = x + i1y with z,y € R. Then we have:

sinw = sin x cosh y + i cos x sinh y

cosw = cosx coshy — ¢sinx sinhy

Since sinh? y < cosh? y, we estimate:

2

2 . .
lcos w|? = cos? x cosh? yy + sin” z sinh? y

2

< cos® z cosh? y + sin?  cosh? y

= cosh?y

so that |cosw| < cosh (Sw). Similarly, we have

2 2

|sinw|? = sin?  cosh? y + cos? zsinh? y

> cos® zsinh? y + sin® 2 cosh? y

= sinh?y

so [sinw| > [sinh (Rw)|. Finally, note that if Rw = 7 (n + %), n € Z, we have:

1
sin |:7T (N + 2> + Zy} ‘ = coshy

Let us take each component of the contour in turn. On FgN), we have R(z) = N + 1

2 )
so that with the estimates above we have:

cos [(m — 0)z] - cosh [(m — 0)3z]
sinmz cosh [13z]

where in the last inequality we have used |(m — 0)SJz| < |7Sz| and properties of cosh.

An identical argument shows that the same bound holds on F3N . Now consider FgN)

and FgN). We have:

cos [(m — 6)z]

sinmz

- cosh [(m —6) (N + 3)]
s [ (¥ + 1)




T

Now, recalling that sinh z = coshx — e, we see that as N — oo, we have:

i SR —60) (V + 5)] :{ 0 0<f<2r
Nooo [sinh [m (N + 5)]|

1 0=0,2r.
Since an infinite sequence which tends to a finite limit must be bounded, we have that

cosh [(m — 0) (N + 1)] -
’sinh [71' (N-l—%)” =k

for some constant K, independent of V.

To summarise our calculations so far, we have shown that on I'™Y) we have:

cos [<ﬂ—9)z} < K41,
sinmz
Now, note that |1+ 2?| = [z +i[|z —i| and that for z € ') we have |z 41| >
N —1>1iN. Thus
1 - 4
14 22|~ N%’
and we conclude
2(K +1)

sup = [F(2)] <
erm N2

Finally, noting that the length of I™V) is given by
‘r““’ = 4(2N +1) < 12N,

we conclude that

’puv)‘ < WJ(V*U‘

< sup [F(2)[ x
zel'(n)

/FUV) F(z)dz

By applying Cauchy’s residue theorem, show that for 0 < 6 < 27

N

cosh(m — ) ein? < C
2sinh 1+n2|~ N’
=N
and conclude that '
cosh(mr —0) i etn?
2sinhm 1+ n2’
=—00
with the sum converging uniformly in 6.
Solution We have, by the residue theorem:
N .
1 cosh(m — ) emf
— F(2)dz = ——F—— .
271 Jpv) (2)dz 2sinh 7 + —Z:N 14 n?

Taking the modulus and estimating the left hand side by the previous part we're done.



Exercise 1.2. Suppose that f € CY(R) is a continuous function with period 2, i.e.
f(0) = f(0+2m). For 6 € [0,27), define:

e cosh(m — 6 + «) 2m cosh(—m — 0 + «)
(o) '_/0 f(e) 2sinh 7 do+ 0 f(e) 2sinh 7 do

and extend 1 to a function on R by periodicity: ¥ (6) = ¥(6 + 27).
a) Show that ¢ € CO(R).

Solution Since an integral of a continuous function is continuous, the expression is
manifestly continuous on the intercal (0,27). To show 1 € C°(R) we need to verify
continuity, but this is straightforward as:

. cosh(—7 + )

$(0) = (@)

da = (2
Jo 2sinh 7 o =(2m)

b) By directly differentiating the formula, show that:

ron 0 sinh(m — 0 + «) 2m sinh(—7 — 0 + «)
Vo) = _/0 J(@) 2sinh da = 0 J(@) 2sinh da

and show that 1 € C1(R).
Solution Note that if f € C*, then

F(x) = /036 f(z, t)dt

then

Fl(z) = f(z,z) + /OI fo(z, t)dt.

Thus for § € (0, 27):

Lo cosh(m) o sinh(r — 0 + «)
Vo) = 1(6) 2sinhm /0 (@) 2sinh 7 da
cosh(m) o sinh(—m — 0 + «)
—10) 2sinhm 0 J(@) 2sinh 7 da

The first term on each line cancels and the result follows. The formula for '(6)
immediately shows that ¢’ € C%(0,27). Again, all that remains to check to see that
1 € CY(R) is the periodicity, which follows from:

e sinh(—7 + «)

OSSN

0 2sinh 7

da = ' (2m).



c¢) Differentiating again, show that
U(0) = —f(0) +¥(0)
Conclude that ¢ € C%(R) is a solution to

—¥"(0) +¥(0) = f(6), OeR.

Solution We again differentiate to obtain for 6 € (0, 27):

wegy smh cosh (m— 0+ «)
WO) = —£(0 281nh7r / fla 2sinh 7 da
sinh(—m) cosh(—m — 0 + «)
0)———= do
+ /() 2sinh 7 0 f( ) 2sinh 7 “
= f(0) +4(0)
Since " = —f + 1, 9" is equal to a 2w-periodic continuous function, and clearly solves

the equation.

Exercise 1.3. Let ¢ € C%(R) be 2r-periodic, i.e. ¢(#) = ¢(f + 2), and suppose that ¢
satisfies:

—¢"(0) + ¢(0) = 0, 0 €R.
a) Show that if ¢ attains a maximum at 6y € R, then ¢(6y) < 0.

Solution At a maximum point ¢”(6p) < 0, so since equation holds ¥ (6y) = ¥ (0g) < 0

b) Show that if ¢ attains a minimum at 6y € R, then ¢(6y) > 0.

Solution At a minimum point ¢”(6p) > 0, so since equation holds () = " (6p) > 0

¢) Show that ¢ = 0.

Solution Since ¢ is periodic and continuous it achieves its maximum and minimum
on the interval [0, 27]. However we must have ¢ < 0 at the maximum and ¢ > 0 at
the minumum, which implies that ¢ = 0.

d) Conclude that there is at most one 1) € C2(R) satisfying ¢(6) = (6 + 27) and solving:
—"(0) +¥(0) = f(0), O€R,
where f € C°(R) is a given 27-periodic function.

Solution Suppose 11, 19 are two solutions. Then ¢ = 1)1 — 1) satisfies the conditions
of the first part, and so must vanish.



Exercise 1.4. For t € R let:

0 t<0
e t>0

o=

x(t) = {

Solution Clearly x is smooth on ¢ < 0 and ¢ > 0, so the only thing that needs to be
shown is that all derivatives are continuous across t = 0. First, I claim that for ¢ > 0:

(@) = P, (1)

a) Show that x € C*°(R).

where:
Poii(s) = 5 [Pa(s) = P4(s)]

is a polynomial, since P,(s) is by assumption. Thus by induction:
1
0 =P (7) e

holds for all n. Now, since ‘an exponential always beats a power’, we deduce that

lim x ™ (t) = 0.
fim () =0

Since y (™ (t) = 0 for all ¢ < 0, we have that x(™ is continuous across ¢t = 0 for all n
and we are done.
b) Show that there exists a function ¢ € C§°(R"™) such that
)o<y<1

ii) supp¢ C Ba(0)
iii) ¢(z) =1 for |z| < 1.

Hint: First construct a positive smooth function x : R — [0, 1] such that

) 0 t<-1
X(t):{1 t>1



Solution We define ¢y : R — R by:

Yo(x) = x (1 — x2)
with x as in the previous part. This is smooth and positive, and supported in [—1, 1].

Now set:
I x(s)ds
7 x(s)ds

This satisfies the conditions of the hint. Now finally set 9 (z) = X(3 — 2 |z|?).

X(t)

Exercise 1.5. a) Suppose ¢ € &(R"). Let {z;};°;, C R™ be a sequence with z; — 0.
Show that
Txl¢_>¢, asl—)oo.

in &(R™), where 7, is the translation operator defined in equation (1.2).

Solution Fix a compact K C Bg(0). D%¢ is continuous on Br+1(0), hence uniformly
continuous. Fix € > 0. By the uniform continuity of D¢ there exists § > 0 such that
for any x,y € Br41(0) with |z — y| < J, we have:

[D%p(y) — D¢(x)| <e.

There exists L such that for all [ > L we have |z;| < min{d, 1}, so that for any z € K
we have:  —x; € Bry1(0) and |z;] < 6. Thus:

|D¢(z — x;) — D%p(x)| < e.
Since this holds for any x € K, we have:

sup |[D¢(x — ;) — D¢(z)| < e.
zeK

This is precisely the statement that D7, ¢ — D¢ uniformly in K. Since we have
uniform convergence of D%7,,¢ on arbitrary compact subsets, we have convergence in

&E(R™).
b) Suppose ¢ € &(R™), show that
Ahgp — Dy, as h — 0,

in &(R"), where A” is the difference quotient defined in Example 2.

Solution Fix a compact K C Br(0), and suppose that || < 1. We have by the mean
value theorem that for each = € K there exists s, with |s;| < |h| such that:

_ D%¢(x + he;) — DY¢(x)

D*Ate(x) i’

= D;D¢(x + sze;)




D;D%¢ is continuous on Br41(0), hence uniformly continuous. Fix € > 0. By the
uniform continuity of D®¢ there exists § > 0 such that for any z,y € Bry1(0) with
|z —y| < &, we have:

|DiD*¢(y) — DiD"¢(x)| <e.

Take |h| < min{d,1}. Then for any z € K we have = + s,e; € Br4+1(0) and |s,e;| =
|sz| < d. Thus

DAl ¢(x) — DQDW(?U)‘ = |D;iD¢(x + sge;) — DiD%¢(x)| <€
We thus conclude that for A sufficiently small,

sup |[D*Al¢(z) — D*D;g(x)| < e
zeK

Which implies that we have uniform convergence of D*A¢ on arbitrary compact sets,
thus convergence in & (R™).

Exercise 1.6. a) Show that . is a vector subspace of &(R"). Show that if {¢;}72, is a

sequence of rapidly decreasing functions which tends to zero in ., then ¢; — 0 in
E(R™).

Solution To see that .7 is a vector subspace it’s enough to verify that ¢1 + Aps €
whenever ¢1, p2 € ¥ and A € C. For any multi-index o and N € N we have:

Seuﬂgl\(lﬂx!)ND“ [61 + Ao] (2)] < sup 11+ )V D21 | + AL [(1 + 2])™ D]

< sup [(1+ [z|)V D1 (x)]
z€R™

+ |A| sup ‘(1 + |x])ND°‘¢>(a:)‘ < 00
rER?

If $; = 0 in ., then in particular we have that D%¢; — 0 uniformly in R" (setting
N =0). Thus D%p; — 0 uniformly in any compact subset of R", so that D%¢; — 0
in &(R").

Show that Z(R") is a vector subspace of .. Show that if {¢;}32, is a sequence of
compactly supported functions which tends to zero in Z(R") then ¢; — 0 in .77

Solution Clearly if ¢ has compact support, then ¢ € . Since supp ¢1 + Ads C
supp ¢1 +supp ¢, we have that Z(R") is closed and hence a subspace of 7. If ¢; — 0
in Z2(R™), then there exists R such that supp ¢; C Br(0). We then have that:

sup ‘(1 + ]x\)NDa(j)j(x)‘ < (1+ R)N sup |D%j(z)| — 0,
TzeR™ 2€BR(0)

since we know that D%¢; — 0 uniformly.



¢) Give an example of a sequence {¢;}32; C C§°(R") such that
i) ¢; = 0in .7, but ¢; has no limit in Z(R").
Solution We can take, for example:
bj(x) = e (x — jer)

for some (non-zero) ¢ € Z(R™).

ii) ¢; = 0in &(R™), but ¢; has no limit in ..

Solution We can take, for example:
9j(z) = ¢ (z — je;)

for some (non-zero) ¢ € Z(R"™).

Exercise 1.7. a) Suppose ¢ € .. Let {z;}7°, C R" be a sequence with ; — 0. Show
that
Te, @ — O, as [ — oo.

in ., where 7, is the translation operator defined in equation (1.2).

Solution Fix N € N and a a multi-index. We note that, by the fundamental theorem
of Calculus, we have:

Ld
—D“ — xyt)dt
[ gDt~ oy

1
/ x;- DD*¢(x — :rlt)dt’
0

< |x;| sup |DD%¢(x — xyt)].
te(0,1)

D7) — D (x)| = \

Now, recall that since ¢ € ., there exists a constant C' (depending on N, «) such
that:
C

D; D% —xt)| <
e

Now, if |z;| < 1, then:
1 1
Ll =] 2 14 ol — ot > L+ Jal = (14|
Thus for |z;| < 1, we have

2N O
D;D* —xt) < —m——.



10

We conclude that:
(1+ |2 [D7p,6(x) — D*(x)] < |ay| N2V C
Since x; — 0 we conclude that:

sup (1 + |x|)N | D%y, p(x) — D*¢(z)| — 0
xER™

and thus 7,,¢ — ¢ in .77

b) Suppose ¢ € .7, show that
Ahg — Dy, as h — 0,
in ., where A? is the difference quotient defined in Example 2.

Solution Fix N € N and « a multi-index. We have by the mean value theorem that
for each = € R™ there exists s, with |s;| < |h| such that:

_ Dp(x + he;) — DY¢(x)

A = D;DY¢(x + 5.¢;)

D°Alg(a)
Therefore,
|D°ALG(x) — D Dig(x)| = |DiD6( + s,e0) — DiD* ()

Again, as in the previous part, we can make use of the fundamental theorem of calculus
to deduce that:

|D2AlG(x) — D*Dio(w)| < |s.| sup IDiDDG(x + tsyey)
te(0,1)

< |h| sup |D;D;D%¢(x + the;)|
te(0,1)

An argument precisely as for the previous part shows that as h — 0:

sup (1 + |z|)N | D*Arg(z) — DDy ()| — 0.
TER™

so that Al¢(z) — D;¢(x) in 7.



Example Sheet 2 M*P18: Fourier Analysis and Theory of Distributions

Exercise 2.1 (*). Suppose that we work over R and that f,g,h € 7.

a) Show that for any multi-index «, we have that D*f € LP(R") for 1 < p < oo, i.e. that

HDaf”Lp(Rn) = (/]%n ’Daf(xﬂp dm‘) ! < Q.

Solution Note that f € . in particular implies that for any N and multi-index «
there exists a constant C,, n such that for x € R" we have:

Coz, N

Now, we estimate:

10 Mpian = [ DS o

1
<(C. p/ Ly
= (Co [ T ™

o0 1
< Ca P On— /
(o) ! o (1

n—1
—_ d
—i—r)NPT "

Setting N > p~!(n + 1), we have

0 0 n o0
/ b N rldr < / b rldr = N = l,
o (1+4+r)hNp o (147t nl(1+r)], n

so that
D% f| L (gen < 00

b) Define
F : R"xR",
(@,y) = f(x)g(y — ).
Show that F' € L'(R™ x R™).

Solution First note that
1 1
ol 1y — | > Jol + 5y — 2] > 5 (e + o))

furthermore:

1 1 1 1
= <
L[z T4 [z[ T fal + fy[ + [zl ly] = 1+ |2 + [yl




Combining these two facts, we deduce that

1 1 _ oN
A+ 2DV A+ |y — 2N = T+ |z[+ |y

Now, let Z = (z,y) € R?". We have, using the fact that f,g € .7

IF(2)] = | f(z)g(y — )|

__Cn Ch

= ()N (1 + [y — )N

! 2N

< (OnyCrh——-—

= VN T+ [y
o
(1+|z)N

= QNCNCR,

By taking N large enough, we can show using the same argument as in the previous
part that F € L!(R?").

c¢) For each x € R", set

Gy : R"xR",
(y,2) = f(y)g(2)h(z —y — 2).

Show that G, € L*(R" x R").
Solution As in the previous part, we have:

Cy Cly
N = N
(L+ [z + [z —yl) (L+ [z + || + [y])

l9(z)h(z —y — 2)| <
So that, setting Z = (y, z), and using |f| < C, we have:

G.(2)| < o Oy
(ENEESEFamLe ey

for any N and by a similar argument to previously, G, € L'(R?").

Exercise 2.2. Show that Theorem 1.10 holds under the alternative hypotheses:
a) f € LY (R"), g€ C*R™) with supgn |D%| < oo for all |a| < k.

Solution 1. First we establish the result for k = 0. We need to show that if f € L!(R")
and g € C°(R") is bounded then f % g is continuous. To show this, it suffices to
show that f*g(z — 2;) — f*g(z) for any sequence {z;}72; with z; — 0. Now,
note that

frgl@—z)= [ fygl@—z —ydy= [ [f(y)r9(z—y)dy.
R R



Now, sending 7 — 0o, we are done, so long as we can justify interchanging the limit
and the integral. Note that for any fixed x and all j:

|f)m9(z —y)| < sup gl 1 f(v)]

Since f € L*(R™) and g is bounded the right hand side is integrable, and so by the
dominated convergence theorem:

i fxale—2) = [ Jim f)rgle =y = [ fwale =y = (o)

j—oo n J—+00

2. Now suppose that f € L'(R") and g € C'(R") with g, D;g bounded. Clearly
f* D;g is continuous by the previous argument. To show fxg € C1(R™), it suffices
to show that for any x € R" and any sequence {h; }J"’;l C R with h; — 0 we have:

lim A} f+g(x) = f* Dig(x).
J—00

Note that

R

:/nﬂy) <Q(x+hj€i —}i/)—g(x—y)>dy

=/, FW)AY g(z — y)dy

so that again we are done provided we can send 7 — oo and interchange the limit
and the integral. We note that:

B 1 [hiq 1 [l
Aig(a) = - / Lo+ te) dt = - / Digla + ter)dt
v o dt hj 0

so we can estimate:
h.
|Alg(e)| < sup [ Dig(x)

An argument precisely analogous to the previous part permits us to apply DCT
and conclude that:

lim A f x g(a) = / lim f(y)AY gz — y)dy = [ » Digla).
j—oo Rn j—00

3. The case where g € C¥(R™) with k > 1 now follows by a simple induction.

b) f € L'(R™) with supp f compact, g € C*(R").



Solution 1. First we establish the result for k = 0. We need to show that if f € L!(R")
with compact support and g € C*(R™) then f % g is continuous. To show this, it
suffices to show that fxg(x — 2;) — f*g(z) for any sequence {z;}52; with z; — 0.
Now, note that

frglz—z)= - fg(z — 2z —y)dy = . fW)72;9(x — y)dy.

Now, sending j — oo, we are done, so long as we can justify interchanging the limit
and the integral. Note that for any fixed z and all j:

|fy)9(x —y)| < (sup \g\> |f(y)]

Br(z)

where R is sufficiently large that supp f + h; C Bg(0) for all j. Since f € LY(R")
the right hand side is integrable, and so by the dominated convergence theorem:

lim fxg(z—2;) = /R lim f(y)7;9(x —y)dy = . fWg(x —y)dy = f*g(x).

j—o0 n J—+00

2. Now suppose that f € L'(R") has compact support and g € C*(R"). Clearly
fD;g is continuous by the previous argument. To show f*g € C*(R"), it suffices
to show that for any » € R" and any sequence {h;}32; C R with h; — 0 we have:

lim Afff*g(:c) = fxDig(x).
J]—00

Note that

_ frgle+hje) = frg(z)
h

:/nﬂy) <Q(x+hj€i —}i/)—g(x—y)>dy

=/, FW)AY g(z — y)dy

Al f 5 g(x)

so that again we are done provided we can send j — oo and interchange the limit
and the integral. By the argument in the proof of part a) which allows us to bound
the difference quotient by the derivative, we have:

‘f(y)Afjg(ﬂf—y)‘ < (sup ‘Di9|) |f ()

BR(E

this allows us to invoke the DCT and deduce that:

lim A g(0) = [ Jim f5)AY (e~ v)dy = [+ Diglo)

j—o0 n J—00

3. The case where g € C*(R™) with k& > 1 now follows by a simple induction.



Exercise 2.3. a) Prove the following identities for r, s > 0 and x € R™:

i)
ii)

iii)

Br(z) 4+ Bs(0) = Brys(x)
Br(z) 4+ Bs(0) = Brys(x)
Br(z) 4+ Bs(0) = Brys(x)

Solution i) Suppose we have v = z + w where z € B,(z) and w € B;(0), then

ii)

iii)

|z — z| < r and |w| < s. Thus:
v—z|=lz+w—2z| <|z—z|+ |w <r+s.

Thus B, (x) + Bs(0) C Byys(z). Conversely, suppose that v € B,;4(x). Then
|v —z| =1 < r+s. Define:

S
=X+

(v—ux), w = (v—x).

r—+ S r—+ S

We have |z —z| < r and |w| < s and v = z +w. Thus v € B,(z) + Bs(0) and
Br-i—s(x) - Br(x) + Bs(o)

Suppose we have v = 2z + w where z € B,(z) and w € Bg(0), then |z — 2| <r
and |w| < s. Thus:

v—z|=z+w—-2|< |z -2+ |w| <r+s.

Thus B, (x) + Bs(0) C B,4s(z). Conversely, suppose that v € B,14(x). Then
|v — x| =1 <r+s. Define:

(v— ).

s
(v—x), w =
r—+S r—+S

z=x+
We have |z —z| < r and |w| < s and v = z + w. Thus v € B,(x) + Bs(0) and
B,is(x) C By(x) + Bs(0).
Suppose we have v = z + w where z € B,(z) and w € Bs(0), then |z — z| <r
and |w| < s. Thus:

v—z|=|z+w—z| <|z—z|+|w <r+s.

Thus B,(x) + Bs(0) C B,ys(x). Conversely, suppose that v € B,ys(x). Then
|lv —z| =1 <r+s. Define:
r s

(v—1x), w =
r—+S r—+ S

z=x+

(v—x).

We have |z —z| < r and |w| < s and v = z + w. Thus v € B,(z) + B,(0) and
B,is(x) C By(x) + Bs(0)

Suppose that A, B C R™. Show that:

b) If one of A or B is open, then so is A + B.



Solution Suppose A is open, and that v = A + B. We must have v = a + b for some
a € Aand b e B. Since A is open, there exists € > 0 such that B.(a) C A. Thus for
any x with |z —a| < e we know x € A. Therefore we have:

A+BDO{x+b:|z—al<e}={z:|z—(a+b)| <e} =Ba+0)

Thus A + B is open, since it contains an open ball about any point.

If A and B are both bounded, then so is A + B.
Solution

Since A and B are both bounded, there exists R > 0 such that A C Br(0) and
B C Bg(0). If a € A and b € B we find:

la+0b| <la|+[b| <R+ R

so that A+ B C Bag(0).

If A is closed and B is compact, then A 4+ B is closed.

Solution Suppose {z; }‘;‘;1 C R™ is a Cauchy sequence in A+ B. By the completeness
of R", we know that x; converges, to a point x € R". To establish that A + B is
closed, we need to show that x € A+ B. For each z;, there exist a;, b; such that:

;= a; + bj.

Since B is compact, we can find a convergent subsequence {bj, }3°, C B such that
limy_,o bj, = b € B. Now consider the sequence:

gy, = Ljp, — bjk

This is Cauchy, since both b;, and xj, are convergent, hence since A is closed, a;, —
a € A. We therefore have that:
r = lim x; = limp_ootj, =a+b

Jj—00

with a € A and b € B, thus x € A+ B.

If A and B are both compact, then so is A + B.

Solution Combining the two previous results, we know that the sum of two closed
and bounded sets is closed and bounded. We're done by Heine-Borel.

Exercise 2.4. Show that if f € C§(R") and g € C4(R™) then fxg € C5(R™). Conclude
that Z(R") is closed under convolution.



Solution If « is a multi-index with || < k + [, we can write a = a1 + ag with |ay| < k
and ay < [. We then have (applying Theorem 1.10 twice as well as and the symmetry of
the convolution):

D (f % g) = D1 D% (f x g) = D*(f x D*2g) = D' f D¢,

Since both functions have compact support, the convolution also has compact support
and we’re done.

Exercise 2.5 (*). Suppose that F': R x R™ — R is a positive integrable simple function,

a) Show that Minkowski’s integral inequality holds for the case p = 1:

/]Rn /]Rn Fla,y)de| dy < /n /n |[F(x,y)| dyde

b) Next prove Young’s inequality: if a,b € Ry and p,q > 1 with p~ + ¢~ = 1 then:

Hint: sett = p~t, consider the function log [taP? + (1 — t)b?] and use the concavity of
the logarithm

c¢) With p,q > 1 such that p~* + ¢~! = 1, show that if |fll, =1 and |[|g|[, = 1 then

/n |f(z)g(z)|dx < 1.

Deduce Hélder’s inequality:

/n [f(@)g(@)[dx <|[f]l,llgll,,  forall fe LP(R"), g,e LI(R").

d) Set G(y) = (fgn F(m,y)dal:)p*1
i) Show that if ¢ = JF5:

p—1

(Gl = | [ ]|

ii) Show that:

p

‘/nF(x,-)dx D :/n ( N G(y)F(x,y)dy> dx

iii) Applying Holder’s inequality, deduce:

‘ / Pz, )dz

p

< elian [ P i

Lp(R)



e) Deduce that Minkowski’s integral inequality

L nF("””’”d”“’pdyF <L 1L |F<x,y>|de];dz

holds for any measurable function F': R™ x R™ — C, where 1 < p < o0.

Exercise 2.6. a) Show that J,, as defined in Example 7 is continuous and linear, hence
a distribution. Find the order.

Solution Let z € ©, where Q@ C R™ is open. Suppose ¢1, ¢p2 € Z(2) and a € C. Then:

0z[p1 + aga] = ¢1(x) + ada(x) = dz[p1] + ad.[P2]

Thus J; : Z2(2) — C is linear. Fix a compact K C . We certainly have:

102[0]] = [#()] < sup |¢(z)|

reK
for all ¢ € C§°(K). Thus 6, is continuous. Since we can control d,[¢] by |¢(x)| without
any derivatives on any K, we have that §, is order 0.
b) Show that T, as defined in Example 7 is continuous and linear, hence a distribution.

Find the order.

Solution Let Q C R"™ is open. Suppose ¢1,¢2 € Z(2) and a € C. Suppose f €
L} . (). Then:

loc.

Ty (61 + ags] = /ﬂ £(2) (61(2) + ada(x)) dz
- / f(2)¢1 (z)dz + / F(2)da(2)dw = Ty[n] + aTy[da).
Q Q

Now, suppose K C  is compact and ¢ € C5°(K). Then:

Tl6) ‘/f £)da

we conclude that T’ is continuous, and has order 0.

Ck sup |p(y)|
yeK

< sup oy \‘/f )| =

¢) By constructing a suitable sequence of smooth functions show that the order of P.V. (%)
is one.

Solution Recall that for ¢ € Z(R) we have:

PV, (;) 6] = lim [/_;o (b(;)dxwt/eoo qb(;)dx} .



We saw in lectures that if ¢ € C§°(Bgr(0)) then:
1
‘P.V. <> [¢]‘ <4Rsup|¢'].
T R"

To show that the order of P.V. (%) is one we need to establish that there exists no
constant C'r such that:

X R”

holds for all ¢ € C§°(Bg(0)). Suppose § € (0, 3) and let ¢5 € C2°(R) be a function
satisfying:

2 (1) ] < Crsup ol 1)

) 0<es <1
ii) ¥s(x) =0 for x < ¢ and x > 2.
i) Ys(z)=1for2d <z <1

We’ve seen in lectures how such a function may be constructed. We have that:

1 [P s() 1.1

Suppose that (?7) holds for some Cr. Then we conclude that:
1
1=

holds for all § € (0,1). Clearly this is absurd, so P.V. (1) has order 1.

Exercise 2.7. Suppose f € LllOC.(Q). Take ¢, as in Theorem 1.13, and define for = with
d(z,00) > e

fe(x) =Ty [quge] )
Show that for any compact K C :

e = Fllpr ey = 0

as € — 0.
[Hint: follow the proof of Theorem 2.2, but use part b) of Theorem 1.13]

Solution Fix K C € compact. Recall that by Lemma 1.14, there exists x € C§°(£2) such
that x =1 on K + Bs(0) for some § > 0. Take € < §. Then, since supp ¢ C B.(0) we
have for x € K:

folx) = /Q F ) rade(y)dy
- / F@)oe(z — y)dy
Q

= [ Xl = vy
= e * (Xf)
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Here we have used the fact that when |z — y| < € we have x = 1 to insert the cut-off

function without altering the integral. Now, since x is smooth, and f € L}

loc.

xf € L*(R™), so as € — 0, we have by Theorem 1.13 that:

e = X1l g2 my = 0

Now since xy = 1 on K we deduce:

[ fe = Fllor ey = 1fe = Xl < I fe = XSl prgny = 0

which is the result we require.

Exercise 2.8. a) Show that if f, fo € C%(Q) and a € C*(12), then

alt, +Tp, =Top 45,

Solution Let ¢ € Z(Q). We calculate:

(aTy, +T,) [¢] = aTy, (@] + T, (9]
=Ty, [ag] + T}, [¢]

/fl ($d£ﬂ+/f2

- /Q (hi(@)a(@) + fa(@)) $(a)de = Tag, 41, 0.

Since ¢ is arbitrary the result follows.
b) Show that if f € C*(Q) then
Dan — TDO‘f
for |a| < k. Deduce that ¢t o D* = D% o ¢.

Solution Let ¢ € 2(Q). We calculate:

DTy[¢] = (—1)l Ty [Dg]

1)l / f(2) D () da

/ D*f(2)é(a)de = Tpesd)

where we have used the compact support of ¢ to integrate by parts.
arbitrary the result follows.

Q, we have

Since ¢ is
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¢) Deduce that if f € C*(Q) then

> ao DTy = Tyy.
o<k

where

Lf=Y a.D"f

lal<k

Solution This follows immediately from the two previous results.

Exercise 2.9. a) Show that for f,g € CJ(R"):

Tf*g = Tf * Tg.

Solution Let ¢ € Z(R™). Recall that Ty x ¢ = f x ¢, so:
Treg*¢=(frg)xd=fx(gx¢)=Ts*(g*9)
=Trx(Ty*p) = (Ty*Ty)* ¢

Here we have used that the convolution of functions is associative, as well as the
definition of convolution of distributions.

b) Show that convolution is linear in both of its arguments, i.e. if u; € 2'(R") and
ug, u4 have compact support then

(u1 + aug) * ug = ug * us + aug * ug

and
uy * (ug + aug) = ug * ug + auy * uy

where a € C is a constant.

Solution First note that if ¢ € Z(R") is a test function, then:

(u1 + auz) * p(x) = (u1 + auz)[%é]
= w1 [T 0] + aua[T. ]
= uy * ¢(x) + aug * p(x).

Moreover if ¢1, ¢ are both test functions, then:

uk (¢1 + aga) = u [Tad1 + atp o]
=u [Txﬁgl} + au [T’z@gZ]
= u* Q1 + au * o.
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We deduce that:

((u1 + aug) *uz) * ¢ = (u1 + aug) x (uz x P)
= uy * (u3 * @) + aug * (uz * @)
= (u1 xug) * ¢ + a(ug *uz) * ¢

= (u1 * ug + aug * uz) * ¢.
Since ¢ was arbitrary, the result follows. For the second part, we calculate:

(u1 * (ug + auq)) * ¢ = ug * ((us + auq) * @)
= up * (ug * ¢ + aug * @)
= u1 * (uz * @) + auy * (ug x @)
= (u1 *xug) * ¢+ a(ug *ug) * ¢

= (u1 *ug + auy * ug) * ¢
Since ¢ was arbitrary, the result follows.
Exercise 2.10. a) Show that if ¢ € Z(R") then

do*¢=¢

Solution

8o * p(x) = b0 [T2¢] = T20(0) = d(x — 0) = ¢(x).
b) Show that if u € 2'(R™) has compact support, then

do*xu=1u

Solution Let ¢ € Z(R") be arbitrary. Then:
(0p % u) *p = 0o * (u*p) =ux*o

Since ¢ was arbitrary the result follows.



Example Sheet 3 M*P18: Fourier Analysis and Theory of Distributions

Exercise 3.1. a) Suppose that {¢;}72, C &(Q) is a sequence such that ¢; — ¢ in &($),
and y € Z2(2). Show that

X¢; = x¢ in 2(Q).

Solution Since ¢; — ¢ in &(§2), we know that for any compact K C Q and any « we
have:

sup |[D%¢j(z) — D¢p(x)| — 0.
zeK

Now consider x¢;. Clearly supp (x¢;) C supp X, since x¢; must vanish wherever x
vanishes. Since x has compact support, there exists a compact K’ with supp (x¢;) C
K'. Further, by the Leibniz rule, we have (for some «):

D¢;= > CapD’xD* g,
{B:8<a}
where C,, g are some combinatorial constants'. Thus:
D (x¢)(x) = D*(xé)(w) = Y CasD’x(x) [D*P6;(x) = D*Fg;()]
{B:8<a}

We can then estimate:

D (x6;)(2) = D*(x0)(@)| < sup " Cag|DPx(@)| [P Pi(w) — D Ppya)|.
TR (6:p<a)

< Z Mo sup [D°P6,(x) = D*~;(w).

Where

Thus, we have:

sup [D(x@;)(x) — D*(x¢)(x)| < > Mg sup |D* Po(x) — D* P(x)] .

reK' {8:8<a} zeK'

The right hand side is a finite sum of terms tending to zero. Thus we’ve established
that the support of x¢; is contained in K’, a compact set, for all j, and moreover, we
have:

sup [D(x;)(@) = D*(x@) (@) = 0.

1B < ameans #; < a; and B2 < aq, etc.



b) Show that if ¢ € &(€2), then there exists a sequence {¢;}32; C Z(Q) such that ¢; — ¢
in &£(Q).
[Hint: Take an exhaustion of Q by compact sets and apply Lemma 1.14]

Solution Suppose that {K;}?°, is an exhaustion of © by compact sets. That is to say,
K; C Q is compact and we have:

o0
K, Cc Ky, |JKi=q
=1

By Lemma 1.14, for each ¢ we can find a x; € Z(Q2) such that x;(z) =1 for all z € K;.
Clearly x;v € 2(2), since supp (x;%) C supp x;, which is compact. Now let E C  be
any fixed compact set. For ¢ > I, where [ is sufficiently large, we have F C K;. To see
this, note that {K7}2°, forms an open cover of {2 and hence of E, so must admit a finite
subcover of . Now, for ¢ > I, we have that x; =1 on E. Thus:

sup |[D%(x;¢) — D% =0
el
so in particular, D“(x;1)) — D* — 0. This is precisely the criterion that x;¢ — ¢ in

Exercise 3.2. a) Prove Lemma 2.11.
[Hint: You should argue in a similar fashion to the proof of Lemma 2.9/

Solution First we show that (2.10) implies that u is continuous. Pick a sequence
{65152, € Z(R") which converges to zero in .%’(R™). This means that for all o and
any M > 0 we have

sup ’(1 + |x|)MDa¢(:L‘)} — 0.

rER?

In particular, this holds with M = N and for all « with |a| < k, so as j — oo we have:

ulgjll <C sup |(1+[a))N D¢(x)] = 0,
z€R"; || <k

and so w is continuous.

To show the opposite implication, we assume that (2.10) does not hold for any k, N, C'.
Since (2.10) does not hold for any k, N, C, in particular it does not hold for k& = 7,
N =j and C = j. Thus there must exist ¢; € /(R") such that:

ulg;]] > 7 sup  [(1+ |z)! D¢;(x)|.

zeR™;|al<j

We define:
¢;(x)
|u[o;]]

Yj(z) =



Clearly ¢; € 7 (R"™). We claim that ¢; — 0 in .(R™). To see this, fix M > 0 and a
multiindex ov. We have, for j > M and j > |af:

sup [(1+[2))MD;(@)| < sup |1+ [/ Doy (x)
zER™ Tz€R™;|B|<]

as a result, we can estimate:

sup |(1+4 |z)" D%p;(z)| = sup | (1 + |z[)" D% (x)]

TeR™ ’u[¢j] TeR™
sup,egn | (14 [2)) D;(x)| 1
< - 3 -
JSUPek ;i p1<j | D7 o ()] J

We conclude that D*; tends to zero on R", but since v and K were arbitrary, this
implies ¥; — 0 in .(R™). However, u[t;] /4 0 since |u[y);]| = 1 by construction. Thus
u is not continuous. This establishes that if u is continuous, then (2.10) must hold for
some k, N, C.

Show that we have the inclusions:

&'(R") C & € 9'(RM).

Solution Suppose {¢;}52; C Z(R") is a sequence such that ¢; — 0 in Z(2), then
there exists an R > 0 such that supp ¢; C Bg(0) for all j and moreover:

sup  [D%¢;(z)| — 0.
:CEBR(O)

for any multi-index a.. Now, since functions of compact support are necessarily rapidly
decreasing, we have {¢;}32, C #(R"). For any N > 0 and o we can estimate:

sup [(1+[2)VDY;(z)] < 1+ RN sup [D¥;(z)| = 0.
zeR™ z€BR(0)

Now suppose that v € .%/. Since Z(R"™) C ., we can certainly make sense of
u: Z(R") — C as a linear operator. Moreover, if {¢;}32; C Z(R") is a sequence such
that ¢; — 0in 2(§), then we've just established that ¢; — 0 in .. As a consequence,
we have that u[¢;] — 0 by the continuity of v : . — C. Thus u : Z(R") — C is

continuous, so we have shown that ./ C 2'(R").
Now suppose {¢; 21 C < (R") is a sequence such that ¢; — 0 in (), then for any
N > 0 and any multi-index «, we have:

sup |(1+ ]m|)NDa¢j(m)| — 0.
z€R™

Since functions in . are necessarily smooth, we have {¢;}32; C &(R"). If K is any
compact set, and o any multi-index then:

sup |[D%¢;(z)| < sup |[D%p;j(z)| — 0.
rzeK rER™



So a ¢; — 0in 7.

Now suppose u € &'(R™). Then since . C &(R"), we can certainly make sense of
u:.# — C as a linear operator. Moreover, if {¢; };";1 C . is a sequence such that
¢; — 0 in .7, then we've just established that ¢; — 0 in &(R™). As a consequence,
we have that u[¢;] — 0 by the continuity of u : &(R") — C. Thus u : ¥ — C is
continuous, so we have shown that &’(R™) C ./(R™). This establishes the result.

Exercise 3.3. Let {a;}32; C R be a sequence of real numbers. Define for ¢ € C*°(R):

ulg] =Y a;é(j)
j=1

provided that the sum converges. Give necessary and sufficient conditions on a; such
that:

a)

u € &'(R).

Solution There must exist J such that a; = 0 for all j > J. This is because
suppu = {j € N : a; # 0}. Thus u has compact support if and only if {a;} is
eventually zero.

ue. .

Solution By Lemma 2.11, u € . if and only if there exist C', N such that:

laj| < Cj".

ue Z7'(R).

Solution u is always in 2'(R"), since a compactly supported function will only ever
see finitely many of the terms in the sequence, so there is no issue of convergence at
infinity.

Exercise 3.4. For £ € R", define e¢(x) = €. Show that T,, € ./, and that:

Tee — 0, as || = oo

in the topology? of ..

Solution Suppose ¢ € .. We note that:

H(z)HLl(Rn) = /R" ‘d)(l)‘ dx = /Rn(l + ‘x’)nJrl ‘d)(l)‘ % (1 + ‘l")inildl'

< sup (1+ [2)™* [6(2)] x / (14 [yl dy
reR" R~

< C sup (1 + [z])"* |g(x)|
zeR™

2This is defined precisely as the topology of 2'(Q), mutatis mutandis.



Thus necessarily ¢ € L', so since |e¢| = 1, we have e¢(z)¢(x) € L'(R™) and so the map:
T 0o = [ éo()da
is well defined and linear. We also note that:

Tdol] < |

so T, is continuous by Lemma 2.11. Thus T, € ..
Let ¢ € .. Then:

% 9(a)| do = [10llp1 gy < € sup (141" [6(2)]

T.fd) = | &€ o()ds = d(-¢).

By Lemma 3.1, we have that T¢,[¢] — 0 as £ — 0. Since ¢ € . was arbitrary, we
conclude that T,, — 0 in . "

Exercise 3.5. Calculate the Fourier transform of the following functions f € L*(R):

sinx
@) J@) =
Solution We know that if: )
90 =13
then: .
e e £ <0,
w0={ 7 5,
Note that:

1
f=5;(eag — e-29)
so applying Lemma 3.2, we deduce:

1 —~ —_— 1 o~ o~
7€) = 5; (@99 — #19(9) = 5 @(E = 1) G+ 1))
So that:
T(ef7h—ett) <1,
g =4 Flet—eth)  —1<g<1

Fle el e tl) g5,
which we can tidy up to give:
imef sinh 1 &< —1,

(&) ={ —ime lsinh¢ —-1<€<1,
—ime ¢sinh1 E>1,

1
b) f(z) = a2 for e > 0 a constant.



*d)

Solution We know that if:

1
90 =13
then: .
A o e §£<0,
Note that:

f(z) = 6729(67195) = eilgﬁ(x)

so applying Lemma 3.2, we deduce:

so that:

_ole=w)?

fz) = \/ge ¢, where o > 0, ¢t > 0 and y are constants.

Solution We know that if g(z) = e_%xQ, then g(§) = v/ 2me 25", We note that:

Solution We need to evaluate the integral:

R e—ixf
1) :/Rcosha:dx

Consider the contour ') = FgR) U FgR) U F:())R) U FflR), where:

%@ =1, ~R<t<R
T () = R +it, 0<t<nm
T (t) = —t + i, ~R<t<R
T (t) = —R+i(r —t) 0<t<n

e—iz§
I = dz = d
7{1(12) cosh z i fiﬂ(R) 9(z)dz



From the expression:
cosh(x + iy) = cosy coshx + isiny sinh x

we know that cosh(z) vanishes for z = £(2n 4 1)7i, where n € Z. Thus to evaluate I
using Cauchy’s formula, we have to consider the residue of g at z = im/2. We find (using
that if g(z) = h(z)/k(z) and k(z) has a simple zero at ¢ then Res(g;x) = h(c)/k'(c)):

. gg .
Res | g; LI ‘6 _ — _je2¢
2 sinh
Thus,
I = 2mezt.

Now let us consider the contributions from the various part of the contour. On FéR)(t)
we have the estimate:

cosh(R + it)[* = cos? t cosh? R + sin® ¢ sinh® R
> cos? tsinh? R + sin® tsinh? R = sinh® R

efizg~ s e(fiRth{)
/ dol = | [ St
r{®) cosh z o cosh(R+1)t

é /
0

cosh(R + it)
mesT

~— sinh R

so that:

dt

—0

as R — 0o. A similar estimate shows that:

e—izf
dz
r(® cosh z
4

— 0,

as R — oo. We also note that:

e—izf p R e—itf J .
= t
/F(lm coshz /R coshit 1

as & — oo, while:

—iz¢ R ité+ne R —ite .
/ ¢ dz = / ¢ dt = eﬂf/ ¢ dt — eﬂff(f)
r(® cosh z r cosht _pcosht
4

as R — 0. Now, using that:

. o—iz€ o7 o—i%€ o—i%E
27’[’62£:I=/ dz+/ dz+/ dz+/ dz.
r(® cosh z r{® coshz r(® coshz r(® coshz




we have, after sending R — oc:
2me® = (1+¢™)f(¢),

so that
. T

fo - —7s )

Exercise 3.6. Suppose f € C1(R") and that f, D;f € L'(R"). Fix e > 0. Show that
there exists f. € C§(R") such that

Lf = fellpr@ny + D5 f = Djfellprgny <

N ™

[Hint: First construct, for large R, a smooth cut-off function xr(z) with xr(z) =1 for
|x| < R, xg(x) =0 for |z| > 2R and |Dxgr(x)| < C, where C is independent of R.|

Solution Let x € C2°(B2(0)) be a smooth function which satisfies 0 < x < 1, with
x(x) =1 for x € B1(0). Define:

T

Xr(r) = X (§> :

We have ygr(z) =1 for |z| < R, xr(z) =0 for |z| > 2R and

Dxr(z) = %Dx (%) :

so that:

==
|

sup |[Dxg(z)] <
TER™

where C' is independent of R. Now, since f, D;f € L*(R"), given § > 0, there exists K

such that:
[ wwiwss [ pgwless
R™\ Bk (0) R™\ B (0)

We take Rs > 2K + 1, and we estimate:

1 = sl = | @) (1= xry (&) da
Barg(0)\Brg(0)
<[ f@ldr< [ f(a)|do
Bargs (0)\Br, (0) R\ B (0)

<9



Similarly, we estimate:

103 = D3, Dl = | 1D £@)] (1= Xy ()
Bars(0)\Brg(0)

4 / F(@)] | D, () da
Baprs (0)\Brg(0)

< <1+0>/ (@) da
Barg(0)\Brg(0)

<(1+0) / f(2)| da
R™\ Bg (0)

<(1+0C)

Taking ¢ sufficiently small that (24 C)d < €/2 and setting f. = x g, f, we have shown:

L = fellprny + 1D f = Djfell 1 gny <

N

Exercise 3.7. Suppose f € L'(R"), with supp f C Bg(0) for some R > 0.

a) Show that f € C°°(R") and for any multi-index:

sup
£ERP

D*f(€)] < Bl gy

Solution Recalling that D*f(¢) = (—i)‘“';o-‘!\f(ﬁ), we can estimate:

|Def(e)| = [ F(0)| =

/ O f(x)e % dx

/ O f(z)e “ " dx
Br(0)

< / 2% f(z)e e
BRr(0)

< Rl (@) da = RIV|| ] 1 gy -
BRr(0)

dx

Here we have used the compactness of the support of f, and the fact that ‘xz‘ < R if
x € Bg(0). Taking the supremum over £, the result follows.

b) Show that f is real analytic, with an infinite radius of convergence, i.c.:
A o £
fl©)=> D f(0)>;

holds for all £ € R™.



Solution We know that f is smooth on R”, so fixing some r > 0, we can apply
Taylor’s theorem to find that for any £ € B,.(0) and any k¥ € N we have:

i =3 pFos + Y Ry’
o<k 1l=h 41

where:

R _— max max ‘D f ’
Bs(8)] < 5 ma 181 e B, (0]

In order to show that the Taylor series converges as k — oo, we need to show that

> Rs(9)2"| =0,

|B]=k+1

as k — oo. We estimate:

> Re(©2P| <#{B: (Bl =k+1} x sup |Rg()| x r*H!
|Bl=k+1 |B|=k+1

Note that by part a), we already have that:

sup |Rp(€)] < BRI £l @) SUp ﬁ
|8l=k+1

Recalling that 8! = 51!8s! - - - B8,!, we can see that 3! > L%J!, so that:

Rb+! o (1L
sup |Rg(§)| < f n <R —r= f n
o VRSO < gy 1l : 111 ey

where we’ve used the result (Stirling’s approximation) that:
w2 ()
e

#4818l =k+1}.

This is the number of ways of partitioning &£+ 1 into at most n integers, or equivalently
the number of ways of putting k + 1 identical objects into n boxes. We can crudely
overestimate this by assuming that all of the objects are distinguishable, in which case
there are n*T! ways to assign the objects to their boxes. Thus we have:

#{B:18] =k+1} <nFl

Now we need to estimate:

Finally then, we have:
,LMJ

B k+1 L%J
> Rg(&)a’| < (nrR) . 11122 ey

|B|=k+1
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3=

e

k41
Now, suppose that k is sufficiently large that (L 2 J) > (2nrR). Then:
—(k+1)

- Lk+1J LkilJ LkJrlJ n N
(nrR?) e B Rrne B '

so that indeed we have:

[

> Rs(9)a"| -0,

|B|=k+1

as k — oco. Thus the Taylor series converges for £ € B,.(0. Since r was arbitrary, we
conclude that the Taylor series converges everywhere.

¢) Show that if f(¢) vanishes on an open set, it must vanish everywhere.
[Hint: use part i) of Lemma 3.2/

Solution First suppose that f (£) vanishes in a neighbourhood of the origin. Then
Do‘f(()) = 0 for all o, and so by the previous part, we have that f = 0. We conclude
that if a compactly supported function has a Fourier transform which vanishes in
the neighbourhood of the origin, then the function (and its transform) must vanish
everyhwhere.

Now, suppose that f (&) is the Fourier transform of a compactly supported function and
that f(&) vanishes in a neighbourhood of . Then 7_,, f(£) vanishes in a neighbourhood
or the origin and moreover:

T f(€) = e_nf (€),

so that 7_, f (&) is the transform of e_, f, which has compact support because f does.
Thus 7_, f (&) is the Fourier transform of a compactly supported function and 7_, f (&)
vanishes in a neighbourhood of the origin. We deduce that 7_, f (&) and hence f (€)
vanishes everywhere.

You may assume the following form of Taylor’s theorem. Suppose g € C*+1(B,.(0)). Then
for z € B.(0):

o) = 3 D05+ Y Ry’

|| <k T Bl=k+1

where the remainder Rg(x) satisfies the following estimate in B;(0):

1 (0%
|Rg(x)| < -; max max |D%(y)].
B! al=|8 yeB, (0)

See §A.1 of the notes for notation.



Example Sheet 4 M*P18: Fourier Analysis and Theory of Distributions

Exercise 4.1. Consider the following ODE problem. Given f : R — C, find ¢ such that:
—¢"+o=1 (2)
a) Show that if f € .7, there is a unique ¢ € . solving (1), and give an expression for .
b) Show that
@) = [ 1Gla =iy

where
lew x <0,

_ 2
G(z) = { %e‘”” x> 0.

Exercise 4.2. Suppose f € L'(R3) is a radial function, i.e. f(Rx) = f(x), whenever
R € SO(3) is a rotation.

a) Show that f is radial.

b) Suppose that £ = (0,0, (). By writing the Fourier integral in polar coordinates, show
that

00 s 2
£ _ —i¢rcosf, 2 - 0dOdrdao.
fo= [ [, ] et noavarag

c) Making the substitution s = cosf, and using the fact that f is radial, deduce:

sinr |¢]

r[¢]

r2dr

F(6) = 4 /0 T

for any & € R™.

Exercise 4.3. (*) Suppose that f,g € L?(R"), and denote the Fourier-Plancherel trans-
form by F. You may assume any results already established for the Fourier transform.

a) Show that
1

(f,9) = G

(Flgl, Flg) -

b) Recall that f(y) = f(—y). Show that:
F ] = @em)" f.

Hence, or otherwise, deduce that F : L?(R") — L?(R") is a bijection, and that
F L*(R™) — L?(R") is a bounded linear map.



c¢) Show that:

FIf1E) = Jim ; (O)f(m)e—ia:.fd$

with convergence in the sense of L?(R™).
d) Suppose that f € C*(R") and f, D, f € L*(R"). Show that &F[f](¢) € L*(R™) and:

F(D;£1(6) = ig; F1f1E)

e) For x € R let:

i) Show that f € L%(R).
ii) Show that:

T -1<¢é<l,
0 =1

f) i) Show that for all x € R™:
|fxg(z)] < HfHL2(R”) H9HL2(R")-
ii) Show that fxg € C°(R") and:
frg=FFIf]- Flo]

where:

1
(2m)" Jgn

Ff)) = f&)erde.

[Hint for parts a), b), d), f): approximate by Schwartz functions/

Exercise 4.4. Work in R3. For k > 0, define the function:

el
" 4r 2|
a) Show that G € L!(R3).
b) Show that:
A 1
O e

[Hint: use Ezercise 4.2, part c)]



Exercise 4.5. Consider the inhomogeneous Helmholtz equation on R3:

~ A+ K= (3)
where f € .. Show that there exists a unique ¢ € .% satisfying (2) given by:

o) = | S~ vy

where
eiklw‘

G(z) = el
[Hint: first derive an equation satisfied by <Z>]
Exercise 4.6. Verify that if f € L] . is such that T € ., then:
7Ty =Try, and Ty =Ty
Exercise 4.7. Let f : R — R be the sign function

=" 150
and define fr(x) = f(2)1_g g)(2).

a) Sketch fr(x).

b) Show that:
TfR—)Tf in .7 as R — oo.
c¢) Show that:

fR(f) _ 2Z,COSR€§ -1

d) For ¢ € .7, show that:
[¢] = —2i /OOO Mdm +2i /000 <¢(az)¢(m)> cos Rxdx

X X

Ty,

e) By applying the Riemann-Lebesgue Lemma, or otherwise, show that for any ¢ € .7

/ Y (x) cos Redx — 0
0

as R — oo.

f) Deduce that

— 1
T; = —2iP.V. ()
T

g) Write down TE, where H is the Heaviside function:

0 xr <0
H(x>:{l x>0



Example Sheet 5 M*P18: Fourier Analysis and Theory of Distributions

Exercise 5.1. Suppose v € &'(R") and let:

u = E TgU.

geEL™

Show that if ¢ € Z(R"™) with supp ¢ C K for some compact K C R" then

ulg] = ZTQUM,

geA
for some finite set A C Z™ which depends only on K. Deduce that u defines a distribution.

Solution Suppose ¢ € Z(R") with suppv C K, with K some fixed, compact K. Pick R
large enough that suppv C Br(0) and K C Bgr(0). Suppose now that |g| > 2R and that
x € K — g, so that x =y — g for some y € K C Bgr(0). From the triangle inequality we
have:

2> lgl — y] > R

so that (K — g) N Br(0) = (. Now consider 7,v[¢] = v[T_4¢]. We have that supp 7_4¢ =
(supp¢ — g) C (K — g) and suppv C Bg(0), so that supp7_4¢ Nsuppv = (. Thus

T4v[¢] = 0. Thus:
ulg = > mulel = > Tl

geEZ™ gGZ"ﬁBgR(O)

so that the sum is in fact finite.

Now consider a sequence {¢;}32; C Z(R") with ¢; — 0 in Z(R"). We have that
supp ¢; C K for some fixed compact set. Applying the previous result, there exists R > 0
depending on K such that:

ulg] = > Tvley]
gEZ"NB2R(0)

This is a finite sum, and since v € &’(R"), we have that each term 7,v[¢;] — 0 as j — oo,
so that:
ulg;] — 0,

and u € Z'(R").

Exercise 5.2. Recall that for x € R™:

For k € N set: ) )
ka{gGZ":k—§§||g||1<k+§}



a)

Show that:
#Qr=2k+1)" — (2k—1)"

so that #Qk < ¢(1 + k)" for some ¢ > 0.

Solution Let C}, be the lattice cube:

1
loez il <n+3}

This has 2k +1 lattice points on each side, so #C = (2k+1)". Clearly Qr = Ci\ Cr_1
and the result follows. To see the bound for #Qy, notice that it is a polynomial of
degree n — 1 whose coefficients depend only on 7, so it must be bounded by ¢(1 +&)"~!
for some c¢ sufficiently large.

By applying the Cauchy-Schwartz identity to estimate a - b for a = (1,...,1) and
b= (lg1],---,|gn|), deduce that:

lgll, < Vnlgl

Solution The Cauchy—-Schwartz inequality tells us that:
a-b< lallb

Applying this with a, b as suggested, we have:

n n
a-b= Zaibi = Z|gz‘ = lgll; -
i=1 i=1

On the other hand:

n n

0 =3 Jaf =3 1=n
1=1

i=1

and
n n
B = (ol =) ail® = gl
i=1 i=1

and the result follows.

Show that there exists a constant C' > 0, depending only on n such that:

YL eyt
(L+ gDt = k2

9€27 gl <K k=t

holds for all K € N. Deduce that:

1
Z (1+ |g))n < 0.

geEL™



Solution We note that:

n+1 n+1
1 1 n 2 n 2

g = (1+n3 [gll)m+ ~ (nF +||g]],)"*! = W lgll
We can split up the sum as:
1 K
ﬂ%ﬁ(( + g™t Z % T+ |g| A+ g™+

and we estimate the second term by:

K
;ZQ T EZQ e NG
+1K #

ol
—

Now, this sum converges to a finite value as K — 0o, so we have that

1
2 (14 [g))+!

geEZ™||gll, <K

is increasing and bounded above, hence converges to a finite value.

Exercise 5.3. Show that if ¢, satisfy:

gl < K(1+ g™

Z Cgégﬂg

gEL™

for some K > 0 and N € N, then:

converges in ..
Solution Fix any M > 0. First recall that if ¢ € ., then:

sup (1+ [2))M i (2)] < o0
zeR?

We deduce that:
Y(27mg)| < 77
WEml < gy

holds for some C' depending on v, M. Letting M = N +n + 1, we have:

1
> labwldlls D leollbCro)l SCK S g

gEL™,|g|<k gEL™ |g|<k geL™ |g|<k



The sum on the right converges as k — oo, so we conclude that:
Z 09527rg[¢]
QGZ"
converges absolutely for any ¢ € .. This is precisely the statement that
Z CgO2rg
gezn

converges in ..

p
loc.

Exercise 5.4. Suppose f € L; (R"™) is a periodic function. Fix € > 0, and let:

1
Q={zeR":|z;|<1,j=1,...,n}, qz{xeR":|xj]<§,j=1,...,n}

a) Show that there exists he € C*°(R") with:

supp he C Q

such that:
||f]lq - hEHLp(Rn) <e.

Solution We have that f1, € LP(R"). Applying Theorem 1.13, we can construct
he € C* such that he — f1, in LP(R™), and with supp he C supp f1, + Bc(0) C Q.

Define

fe= Z Tghe

geEL™
b) Show that f. is smooth and periodic.

Solution Since h, has support inside @), the sum is locally finite. That is to say that
if U is any bounded open set,

fely = g Tghe = E Tghe
geEZL™ geEZ"NE

for some bounded set E, so that f. is certainly smooth in U since it is a finite sum of
smooth functions. To see that f. is periodic, we note that if ¢’ € Z™, then:

Ty fe = Z Ty Tghe = Z Tgtg'he = Z Tgrhe = fe

QGZ" g€Zn gllezn

c) Show that there exists a constant ¢, depending only on n such that:

||f - fe“Lp(q) < cpeE.



Solution Noting that:

172y = hel o any = 11 = el o) + el ooy
we deduce that:

= he||Lp(q) + HheHLp(Q\q) <€
Now note that:

(f_fe)|q:f_he_ Z Tghe

lg|<n
since if g € Z™ with |g| > n and z € ¢, then z — g ¢ Q). We deduce:

||f_fe||Lp(q) <e+ Z € = CpeE.

lg|=1

Exercise 5.5. Suppose that f: R — R is given by:

fa)=w for ol <5, flet1) = fa).
Show that: . - "
flx) = Z —1(2;173 2T = Z —(_:1)71- sin(2mnz),

with convergence in L? _ (R).

Solution By Theorem 3.17 and Corollary 3.18 we know that for f € LIQOC. (R) a periodic
function, we have that:

f(l’): Z fn€27rina:

n=—oo

where the sum converges in L%DC. and the Fourier coefficients are given by:

fn = /_2 e_zmmf(x)da:.

N

We calculate for n # 0.

2 _orinx % —2minT
Jn= e f(z)dr = Te dx

1
2

For n = 0, we have



Thus we have:

neZ,n#0

For the second equality, we rewrite the sum as:

2mn 2mn 2mn
ne€Z,n#0 n=1 n=-—o0o
0o . oo . _
_ Z Z(_l)ne%rinw + Z Z(_l) n627ri(—n)x
2mn 27w (—n)
n=1 n=1
0o . oo
—1)" ) ) -1 n+1
_ 7; 1(27rn) [eQﬂznm - 6727rmx] _ 7; ( n)ﬂ- sin(27rna;)

Exercise 5.6. Suppose f : R — R is given by:
] -1 —3<z<0 _
fo={ 77 TISEE) . sern=sw.
a) Show that:

e} [e.e]

_ 1 2 orient1)z _ 4 1.
fx) Z it = Z o 10 [2m(2n + 1)z]

v
n=-—o00 n=0

With convergence in L2 (R").

loc.

2
loc.

Solution By Theorem 3.17 and Corollary 3.18 we know that for f € L7 (R) a periodic

function, we have that:

f(l'): Z fn62m'nx

n=-—oo

where the sum converges in LZQOC. and the Fourier coefficients are given by:

fn _ /2 6_2”i”””f(x)da:.

=

We calculate for n # 0:

0 . RN
fn _ _/ GZTmnde—l-/ efQﬁznzdI
,% 0
B 6727Tinz 0 672m'mv %
| 2mni | 2mni |,
1
= —— (1= (="
— (1= (1))
{ 2 n odd

1
2

™i
0 n even



For n = 0, we have:

1
/ dx+/2dyc:0.
B 0

2

Thus:
2 omi 1 & 2 ori2nt1)
_ _Z 2mine . mi(2n T
)= Z ﬂnie ) Z 2n + le
n odd n=-—0o
We can re-write this sum as:
o) —1 o)
1 Z 2 mienine _ L Z 2 emintle Z 2 mientl)e
! = 2n +1 e = 2n + 1 2n + 1

[e.9]

iz_ 2 omi@ntl)e ii
T = 2n+1 mi =

)
i Z i |:627ri(2n+1)x N e—2m‘(2n+1)w}
Iy = 2n +1

o0

27rz (2n+1)x

4

m
nO

sm [27(2n + 1)x]

Define the partial sum:

= 1
(z) =8 ; @ T sin [27(2n + 1)] .

b) Show that:
e N-1

Sn(x) = 8/0 Z cos [27(2n + 1)t] dt.

n=0

Solution Noting that:

@ 1) sin [27(2n 4+ 1)z] = /0 cos [2m(2n + 1)t] dt,

we have:

N—1 .

x) =8 Z / cos [2m(2n + 1)t] dt
n=0 "0
e N—-1

= 8/0 Z cos [2m(2n + 1)t] dt.

n=0

where we can commute the sum and the integral since the sum is finite.



c¢) Show that:
1
cos [2m(2n + 1)t] sin 27t = 3 (sin [27(2n + 2)t] — sin [47nt])

And deduce:

T sin4w Nt
= —dt
Sn(z) =8 /0 2sin 27t

Solution We have the trig identity:
. L. . :
cosasinb = 5 [sin(a + b) — sin(a — b)].
Setting a = 2m(2n + 1)t, b = 2xt gives the result. Summing from n =0 to N — 1, we
have a telescoping sum, and we find:

N-1

1
Z cos [2m(2n + 1)t] sin 27t = 3 sin [47 N't]
n=0

Dividing by sin 27t and integrating in ¢ from 0 to x we find:

» N-1

T sindr Nt
S =38 2m(2 1)t]dt =8 ——dt.
~N () /0 ;)COS[ m(2n + 1)t] /0 5 Sn ot
d) Show that the first local maximum of Sy occurs at x = ﬁ, and:
1
RS v sindw Nt 47rN t T sins
> —d ~1.1

Solution We have that:
sindmNx

Sy (x) =

2sin 27z’

which vanishes for 4Nz € Z, with x # 0. Thus the first local extremum is at x =
This is a maximum, since Sy (z) > 0 for z < ﬁ and S (z) < 0 for ﬁ <z <5
Noticing that for x > 0 we have sinz < x, we find:

1 1
1 iN sin4dnw Nt N sin4dn Nt
S 8 > 8 A
N <4N> /D 2sin2nt /0 Art

Changing variables to s = 4w Nt, the second part of the result follows.

z\ﬂ?\ﬂ

e) Conclude that the sum in part a) does not converge uniformly.



Solution For N > 1, we have that 0 < ﬁ < %, so f (ﬁ) = 1. Thus for all N we

have: o
() (G2 2
Thus:
sup |Sy (z) = f(z)| /0
z€(0,3)
as N — oo.

This lack of uniform convergence of a Fourier series at a point of discontinuity is known
as Gibbs Phenomenon.

Exercise 5.7. (*) Suppose that A = {\1,... A, } is a basis for R”. We define the lattice
generated by A to be:

n

A= sz)\j 125 ez
j=1

Define the fundamental cell:
- 1
qn = lej)\j gl <5
J:

We say that u € 2'(R"™) is A—periodic if:
Tglh = U for all g € A.

a) Show that there exists ¢ € C§°(2¢a) such that ¢ > 0 and

ZTgl/} =1.

geA

b) Show that if u € 2'(R") is A—periodic and 1, 1)’ are both as in part a), then

1 1

muw] = mﬂW] =: M(u)

c) Define the dual lattice by:
N :={xeR":g-x€2nZ, Vg € A}

Show that there exists a basis A* = {A},... A} } such that AT+ Ak = djk, and A* is the
lattice induced by A*.

d) Show that if g € A* then e, is A—periodic.
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e) Show that if u € 2'(R™) is A—periodic, then:

U= Z gl

geN*
for some ¢, € C satisfying |c,| < K(1 + |g|)" for some K >0, N € Z.

f) Show that if u € Z'(R™) is A—periodic, then:

U= Z dgTe,

geEN*
where |d,| < K(1+ |g|)" for some K > 0, N € Z are given by:

dg = M(e_gu)

Exercise 5.8. Suppose s > 0.
a) Show that .7 ¢ H*(R").

Solution Suppose ¢ € .7, then gZ; € . as the Fourier transform maps the Schwartz
space to itself. Since ¢ € .¢, we know that for any M > 0 we have:

sup (1+ [¢)™ |3(¢)| < oo
rER™

Taking M = s + % we have that:
<o

Now, we can estimate:

~ 2
GRS

H(bHi]s(Rn) = /Rn (1 + ‘g’)?s

2s Cj o 1
<[ a+ie @t ®=C L ™ <o

b) Suppose f € H*(R™). Show that given € > 0 there exists f. € . with:
L = fellgsgny <€

Hint: First find g € . such that

[(f =g+

L2(R™)
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Solution Since f € H*(R™), we have that f(1+ |¢])® € L2(R™). Thus, given € > 0,
there exists I > 0 such that:

[ Fa+ e

L2®M\BR(0) 2

By Theorem 1.13 b), we can find he € C§°(R") such that:

Hf(l +1€1)* Ly (0) — Pe

< £
L2(R7) 2

Defining ge = he(1 + [£])7° € C§°(R™), we have:

|(f =g+ 1l

oy = [FOH 1D 0= L) + 71 416D T00) — e

< ||fa+1ebs

< €.

L2(R™)

P+ 1D a0 — ho

L2(R™\Bg(0 L2(R")

Now, clearly g € C§°(R") C ., so there exists f. € . with f. = g.. This satisfies:

< €,
L2(Rn)

1 = Fel sy = || (F = 901+ 1el)®

and we're done.

Show that
1 izs @my < I 1 e ey
for t > s. Deduce that:

1
A L2 ny < @ 1 s ey

Hint: Use Parseval’s formula

Solution Clearly if s < ¢, then:

(1+ e < (1+1eh*,

/ (1+ g™
Rn

whence it is immediate that:

so we have:

fof de< [ a+in|iel «

s mny < |1 e mony -

Setting s = 0, we have that for ¢t > 0:

2 1 /
172 @my @) Jan

which gives the result.

fof de< [ alen® |fo)] as
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d) Show that the derivative D® is a bounded linear map from H*+*¥(R") into H*(R"),
where k = |a/.
Solution First note that there exists a constant ¢, such that:
€% < call + €)1

Making use of the fact that:

Def(e) = illee f ),

we have
— 2
10 ey = [ 1+l D6 e
25 (e 12 | 7 2
= [ asiepier|fel «
—~ 2
<co [ IO d = 1ok
so that:

||Daf| |H5(]R”) < ¢q Hf| |Hs+k(Rn)
and hence the operator D : H*+F(R™) — H*(R") is bounded.

Exercise 5.9. Suppose that ug € L'(R") N L?(R") and that u(¢, z) is the solution of the
heat equation with initial data ug. Explicitly, u is given by:

u(t,z) = / do(€)e e e g,

(2m)"
for ¢t > 0.
a) Show that:

[, Il p2@ny < luollp2@ny »

Solution By Parseval’s formula, we have that:

1 X 1
It M an) = Gy 18 Mlzaam) = oy

2
dgete

L2(R™)
2 .
However, for ¢ > 0, we have ’e*tm ‘ < 1, so we can estimate:

1
(2m)"

1 .
< @n)n laol| L2 (mny = l[uol] L2 mn)

2
fpe— el ’

L2(R™)

where in the last line we applied Parseval again. This gives the result.
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u(t, ) = up * K¢(z)

b) Show that:

where the heat kernel is given by:
Ki(x) = 7
t( ) (47rt)5

2
x

Vat

Solution First, we recall from Example 12 iv) that if f(z) = 67%‘“2, then f(£) =
(2m)2e 2", We also know from Lemma 3.2 i) that if fy(z) = A"f(A~'z), then

()

() = F(AE). Note that:
o) = o3

Combining these facts, we deduce that:
Ki() = "

a(t, &) = () K (£).

Thus, we have that:
)

By Lemma 3.2 ii), we have that:
K - n
(4mt)z

u(t, x) = up x Ki(v)
¢) Suppose that ug > 0. Show that v > 0, and:
[u(t, )l @ny = luoll L1 @ny

[Hint: Lemma 1.9 may be useful]
g(z)dx.

Solution By Lemma 1.9, we know that if f,g € .7
frg)ds= [ flys [
R?’L n

]Rn
Suppose ug € .. Since ug > 0, and Ky > 0 we have ug * K; > 0, so that:
[t I prny = o * Kell g1y —/R ug * Ky (z)da.

Now, applying the result above we have that:
llt. Mlgsqany = [ woladde | KuGwhde = ol oo

where we have used that:
Ki(2)dz = K(0) = 1.

R

Now, since .7 is dense in L?(R™) N L(R™), we can extend this result to the full space

by continuity.



14
Exercise 5.10. Consider the Schréodinger equation:

u = iAu in (0,7) x R", (@)
u = ug on {0} x R"

Suppose ug € H*(R™).

a) Show that (3) admits a unique solution u such that

u € CO([0,T); H2(R™)) N C((0,T); L*(R™)),

whose spatial Fourier-Plancherel transform is given by:
lt,€) = g () IEF.

Solution Assuming we have such a solution, and Fourier transforming in the spatial
variable (which we're entitled to do, under the assumptions on u) the equation becomes:

a = —il¢Pa in (0,7) x R,
. = o on {0} xR"”

This can be readily solved to give:
a(t, €) = o(&)e I (5)

Now suppose ug € H2(R™). The u defined by (??) belongs to the space C°([0, T); H?(R™))N
C1((0,T); L?(R™)) and we can undo the steps above to deduce that u solves (3).
Bonus material: We'll verify that u € C°([0,T); H2(R"™))NC((0,T); L2(R™)). This

is included for interest, but would be overkill in an exam. First, we note that:
llu(t, )32 @ny = /R la(t I (1 + ) dg = /R Jao(€) (1 + [&])"dg = [Juol 2z

so that u(t,-) € H*(R"). We can verify that in fact the map u : [0,7) — H?(R") is
continuous. We calculate, for ¢,¢" € [0,T):

e, ) =t oy = [

‘e—it\a? _ oitlel
R’n

Slan(©)2 (1 + €]y de

Clearly:
. -/ 2
tim [e 16 — =16 g () (14 J¢l)* = 0

and moreover

. 2 Y 2
‘e itle* _ —it'le]

lao(€) (1 + (€ < 2liao(©) (1 + [¢l)*

which is integrable, since ug € H?(R"). Thus we conclude that:

lim ||u(t,-) — u(t, -)HHQ(RTL) = 0.

t'—t
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Next we verify that the map u : (0,7) — L?(R") is differentiable. Let w(t,z) be
defined in terms of its spatial Fourier transform by:

(1, €) = ~i €] do(©)e "
First we claim that w(t,-) € L*(R"). By Parseval’s formula, we have:

1 . 1 .
lw(t, )72@ny) = @ 1 (t, )| 72ny = W/}Rn a0 (€)]? €] dg

which is finite since uy € H2(R"). Next we claim w : (0,7) — L*(R") given by
t — w(t,-) is in fact continuous. To see this we calculate, again with Parseval:

/ 1
Hw(t, ) —w(t, ')HEQ(R") - W /Rn

Invoking the Dominated convergence theorem precisely as above shows that:

2 A~

GIRENS

o 2 il |2
o—itlel? _ —it'lE]

B o, =0,y O

Finally, for ¢, € (0,T) we wish to show that:

t. ) —u(t,-
lim ult, ) —ult',-) S wl(t, ).
t'—t t—t
as t' — t. We calculate:

at, ) —a(t, ) e~ itlE”? _ o—it'l

+ ¢l o(§)e 4T = io(8) ( +ilef? euw)

P t—t
i 2 -/ ¢12
) y (e M — et
ZUO(f) ’f‘ 2 2 e
tE]® =t 1€
Note that:
. . tl¢|?
e
t'¢)?
so that

’e—iﬂél? _ e—it’lél2‘ < ’t €2 — ¢ ‘§|2‘ _

. 2 a2
e 1'5‘5'2 —e ‘;l 4 jeitlél?
gl —t[gl

7't§2 - 7%’&2
)
tIEl” — [l

We conclude that:

<2

and moreover

as t/ — t.
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In conclusion, we can deduce that:

alt,) —alt,) . o e2]?
— il an(©e M =0
as t' — t and moreover:
alt, ) —alt',) . o T A
= gt an(©e T < Jaol I

where the right hand side is integrable since uyp € H?(R"). Thus we can invoke the

Dominated Convergence Theorem to decuce:

t,) —u(t,- 1 |at,-) —a, -
u(?) Ii(?)_w(t7.) — - u(?) /u//( 7)_/12}(t7') _>0
t o t LQ(R") (27T) t - t LQ(Rn)
as t/ — t.
Show that:
w(t, )l g2y = [uoll g2 @y
Solution This is a simple calculation with the norm:
[t 2y = /R O L+ ledg = | Jao(©)F (L+ g *dg = lluollFrz(gn)
For t > 0, let K; € L} . (R™) be given by:
1 ix2
Ky(z) = ——e'it ,
(4mit)2

where for n odd we take the usual branch cut so that iz = 5. For ¢ > 0 set

Ki(z) = e*€|w|2Kt(x).

i) Show that Txe — Tk, in 7" as € — 0.
ii) Show that if #(co) > 0, then:

oa? T o_&
e T Ty — [ ZeT s
R g

— 1 2 _ie?
Kt (é') — m e 1+4+4ite

iii) Deduce that

iv) Conclude that:

—

Tx, = Tx,,

~ . 2
where K; = e~ itEl
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*d) Suppose that u € ./ (R"™). Show that for ¢t > 0:

u(t.) = [ wol)Kile )y,

and deduce:
fu(t,2)| € —— [laol]
sup u(t,z)| < — ||t ny -
t>0,€R" (4mt)2 L)

This type of estimate which shows us that (locally) solutions to the Schrodinger
equation decay in time is known as a dispersive estimate.

Exercise 5.11. Let R3 := R3\ {0}, Sir := (=T,T) x R? and |z| = r. You may assume
the result that if u = u(r,t) is radial, we have

d*u 2 0u
AU(|CC| ,t) = A’U,(T, t) = w(r’ t) + ;E(T; t)

a) Suppose u(z,t) = %v(r, t) for some function v. Show that u solves the wave equation
on R2 x (0,7) if and only if v satisfies the one-dimensional wave equation

P e,
otz or2

on (0,00) x (=T,T).

Solution Assuming u has the form given, we calculate

ou 10v 1
I
or ror r?
and
0%u 1 0% 1 Ov 2
— =5 — 25—+ =V
or2  r Or? r2or 13
so that
u  20u  10%
A= — + —— = ———.
or2  ror ror?
We also have that
9%u 1 0%
otz r o2
so that ‘ ‘
9%u LA 1 0% n 9%
e w= -2 -+ ="
ot? r ot2 ~ Or?

so clearly, u obeys the three dimensional wave equation away from r = 0 if and only if
v obeys the one-dimensional wave equation.
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b)

Suppose f,g € C?(R). Deduce that

frt) | glr=1)

u(z,t) =
(2,) r r
is a solution of the wave equation on S, 7 which vanishes for large |z|.
Solution This function is of the form previously considered, with

v(r,t) = f(r+t)+g(r—t).

This solves the one-dimensional wave equation as can be verified directly. Moreover,
since f, g have compact support, for any fixed ¢ we find that u will vanish for sufficiently
large r.

Show that if f € C2(R) is an odd function (i.e. f(s) = —f(—s) for all s) then

fr+t)+ fr—1)
2r

u(z,t) =

extends as a C? function which solves the wave equation on St := (=T, T) x R3, with

u(0,t) = f'(t).
Solution Using the fact that f is three times differentiable at ¢, we have

flr+1t)=ft)+ f'(t)r+ %f”(t)rQ + éf’”(t)r3 + R(r, 1)

where R
Jim 27 _ g,
r—0 7'3

Making use of a similar expansion about —t¢ and Inserting the condition that f is odd,
we deduce

")y 4 L ()3 Ar ~
u(e,t) = TOTEGTTOTEBY gy Ly o R

1 L
= [+ 5 1 )dya'e + Rl ¢)
with R(|z|,t) € C?(S.r) and

R(jz|, 1)

S = 0.

lim
z—0 ’l'|

This implies that R(-,t) € C?(R3) and hence u(-,t) € C*(R?). A similar calculation
establishes that u;(-,t) € C1(R3) and uy (-, t) € CY(R?), which completes the proof.
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*d) By considering a suitable sequence of functions f, or otherwise, deduce that there
exists no constant C independent of u such that the estimate

Sup ([uf + fur]) < C'sup (juf + Ju])
T

3o
holds for all solutions u € C?(Sr) of the wave equation which vanish for large |z|.
Solution Suppose that y : R — R satisfies:

a) x is smooth and even.
b) x(0) =1
c) x(s) =0 for |s| > 1.

By the mean value theorem, we can easily see that supg |x’| > 1. Consider the sequence

of functions:
fr(s) = \}E [X (ks — 2\/E) - X (k‘s + 2\/%)}

for k a sufficiently large integer. We see that fi(s) is odd, smooth, and satisfies

fr(s)

S

< C.

sup ’f]’c(s)‘ > Vk, sup
_1 0<s
0<s<2k™2

Now let us construct a solution to the wave equation from fj as in part ¢). Clearly,
we have
fi(s)

S

sup |u| = sup
S 5>0

<o

and

sup|u| > sup [u(0,t)] > sup |fi(s)| = VE.
1

ST —T<t<T 0<s<2k— %

Where we take k sufficiently large that 2k~ < T. We also note that utly,, = 0.
Suppose now that there exists a constant C' such that

sup |u| < C'sup (Juf + [u])

St Yo

holds for all solutions u € C?(Sr) of the wave equation which vanish for large |z|.
Applying this to the sequence we have just constructed we find

VEk<C

for all sufficiently large k, which is clearly absurd.



Example Sheet A M3P18: Fourier Analysis and Theory of Distributions

Exercise A.1. Suppose that AyA2 > 0 and that U C X is a convex subset of a vector
space X. Show that:
MU + XU = (M + \)U.

Exercise A.2. a) Suppose that (S,7) is a topological space, and that /3 is a base for 7.
Show that:

i) If x € S, then there exists some B €  with x € B.
ii) If By, By € 3, then for every x € By N By there exists B € 8 with:

r€eB B C By N Bs.

b) Conversely, suppose that one is given a set S and a collection 5 of subsets of S
satisfying i), #i) above. Define 7 by:

Uer < forall z € U, there exists B € 3 such that x € B and B C U.

i.e. 7 is the set of all unions of elements of 5. Show that (S, 7) is a topological space,
with base 5. We say that 7 is the topology generated by

c¢) Suppose that 3, 8’ both satisfy conditions i), ii) above and generate topologies 7,
7/ respectively. Moreover, suppose that if B € 3 then for every # € B there exists
B’ € ' satisfying

x € B, and B'cB

Then 7 C 7.

Solution a) i) Since we have S € 7, and that any element of 7 can be written as a
union of elements of 3, we must have that for each x € S there is some B €
with z € B.

ii) Since § is a base, if By, By € ( they are open, and hence so is By N Bs. Since

every open set is a union of elements of £, for any point € B} N B, there must
be some B € § with z € B and B C By N Bs.

b) The empty set belongs to 7 trivially. S belongs to 7 as a consequence of condition 7).
Suppose that {U;};e7 is a set of elements of 7 indexed by a set Z. We need to show:

U=|Juier
i€l

Suppose x € U. Then there is some ¢ € Z such that x € U;. Since U; € 7, there exists
some B € § with x € B and B C U;. But then since U; C U, we have B C U and so
7 is closed under arbitrary unions. It remains to show then that the intersection of

Please send any corrections to c.warnick@imperial.ac.uk



two elements of 7 belong to 7. Suppose Uy, Us C 7, and let x € Uy N Us. Then by
definition of 7, there exist By, By € 8 with x € By, x € By and By C Uy, By C Us.
By condition ii), there exists B € § with x € B and B C By N By C U NUy, so
Uy NUsy € 7 and 7 is closed under pairwise intersection and we’re done.

¢) Suppose that U € 7, and let x € U. Then by the definition of 7 there exists B € 3
with B C U and z € B. By the assumption, there exists B’ € 8/ with x € B’ and
B’ c B C U, thus U € 7 and we’re done.

Exercise A.3. Suppose (S1,71), (S2,72) and (S3,73) are topological spaces, and that
f 51 x S — S5 is a continuous map. Show that for each a € S; and b € Ss, the maps

fa + S2— 53, o 81— Ss,
y— fla,y), T f(x,0),

are continuous.

The condition that f is continuous with respect to the product topology is sometimes
called joint continuity, while the continuity of f,, f? is called separate continuity. Thus
joint continuity implies separate continuity. The converse is not true.

Solution Suppose that U C Ss is open, then by the definition of continuity, we know
that f~'(U) C S1 x So is open in the product topology. Thus for each (x,%) such
that f(x,y) € U, we can find neighbourhoods Uy, Us of x,y respectively such that
Uy x Uy C f~HU).

Now fix @ and consider y € f;}(U). By the previous argument there exists Uy, U
open in S, Sy respectively such that a € Uy, y € Us and for any (2/,y') € Uy x Uy we
have f(2',y") € U. In particular this holds for ' = a and ¢y’ € U,. Thus the set U is
open in Sy and Us C f;1(U). The case of f° follows by an identical argument.

Exercise A.4. Show that the base

ﬁ@ = {(p,Q) :Dp,q € Qa p < q}a
generates the standard topology on R.

Solution 1. Since Bg C Br, it is clear that any open set with respect to the topology
generated by fg is also an open set with respect to the topology generated by .

2. To show the converse, we must show that if B € Sg and « € B is arbitrary, then
there exists B' € fg with € B’ and B’ C B. To see this, recall that between any
two real numbers lies an element of Q. Thus if B = (a,b) and x € (a,b), there
exists p,q € Q with a < p < z < ¢ < b. taking B’ = (p,q), we’re done.

Exercise A.5. Suppose that (S, d) is a metric space. Show that S is Hausdorff with
respect to the metric topology.



Solution Suppose z,y € S with z # y, and let r = d(x,y). Consider the sets U} = B% (x),

Uy=DB

g(y) By definition of the metric topology these are both open sets, and moreover

x € Uy and y € Uy. By the triangle inequality we have:

r=d(z,y) <d(z,z)+d(y,z)

Thus if z € Uy, we must have d(y, z) > 2r so that z & Us, thus U; N Uy = () and we have

3

shown that S is Hausdorff with the metric topology.

Exercise A.6. Let us take X = R"™, thought of as a vector space over R and define:

1
(@, zn)ll, = (2P + o Jznf)r, p2 1

a) Show that (R", |[-]|,) is a normed vector space:

i)
ii)

iii)

iv)

vi)

First check that the positivity and homogeneity property are satisfied.
Establish the triangle inequality for the special case p = 1.
Next prove Young’s inequality: if a,b € Ry and p,q > 1 with p~' 4+ ¢~ ! = 1 then:

al b
ab < — + —
p q

Hint: sett = p~', consider the function log [taP + (1 — t)b9] and use the concavity
of the logarithm

With p, ¢ > 1 such that p~! + ¢~ = 1, show that if ||z[|, = 1 and ||y[|, =1 then

n
Z |lzayi| < 1.
i=1
Deduce Holder’s inequality:
n
> lwiyil <llall, [lyll,,  for all z,y,€ R™,
i=1
Show that

n n
o +yll2 <> Jal s+ wilP" ) il s + walP
i=1 =1

Apply Hélder’s inequality to deduce:

—1
e+ gy < (11all, + llyll,) lle + Il

and conclude
llz+yll, < llzll, + lyll, -



b) Show that the metric topology of (R, ||||p) agrees with the standard topology.
Hint: Use part ¢) of Exercise A.2

Solution a) i) We fist note that [|z[|, > 0, with equality if and only if 21 =29 = -+~ =

ii)

iii)

iv)

xn, = 0. The homogeneity property ||ax|| = |a|||z||. is easily verified.

For the case p = 1, the triangle inequality follows easily using the fact that for
a,b € R we have |a + b| < |a|+b| as can be shown by considering the four possible
choices of sign for a, b separately.

Since p > 1, setting t = p~! we have 0 < t < 1. Now recall that the logarithm
function is concave. This implies that if 0 < x,y, and 0 <t < 1 then:
tlogx + (1 —t)logy < log(tx + (1 — t)y).

Applying this with x = aP, y = b? we have for the LHS:
1 1
tlogz + (1 —t)logy = — loga®? + —log b? = log (ab) .
p q

and tx + (1 —t)y = %p + %. Thus:

P B
log (ab) < log (a + > .
p q

The result follows from exponentiating and using the monotonicity of the expo-
nential.

We apply Young’s inequality to obtain:
n

n P q
T ,
g |z < E <| d + v )
i=1

i=1 p q

Next we use that ||z[|, =1 to deduce that

n
L= lally =) lail”
i=1

and similarly for y, so that:

n

1 1
Z\lﬂzyz! <-+-=1
im1 p q
Now suppose z,y € R™. If either x = 0 or y = 0 then Holder’s inequality holds
trivially, so we can suppose ||z|[, # 0 and [|y[, # 0. We define:

/ 1 p_ 1
o=z, Y=y
11, Iyl



These satisfy ||2/]|, = [[y'|l, = 1, so we can apply the first result to obtain:

n 1 n
123 ol = o D leil
i=1

], llyll, =

Multiplying by |[z||, [|y||, we are done.

v) We estimate

n n
e +yllb = lwi+yil” =D i+ il |z + 9"

=1 =1
n n
< al lw+ wlP Y Jyal e+l
=1 i=1

using the triangle inequality for |-|.

vi) We apply Hélder’s inequality to each sum separately. We have that ¢~ ' =1 —p
so that ¢ = [%

-1

Q=

n - [ n N\
>l lzi+ il < Nall, | 3 (los + ™)
=1 Li=1

p—1

P

[ n
= ||l | |z +yl”
Li=1

-1
= llzll, llz = yll;

b) Denote by 7 the standard topology on R™. Recall that a base is given by the sets
(a1,b1) X (ag,b2) X -+ X (an, by) for real numbers a;, b; with a; < b;, while a base for
the norm topology is given by the balls B,(z) = {y € R" : ||y — pr < r}. Suppose

B = (al,bl) X (az,bQ) X oo X (an,bn),

and that a; < x; < b;, so that € B. Then if y satisfies |y; — ;| < min{—a;, b;}, we
have y € B. Thus there exists € > 0 such that if max; |y; — ;| < €, we have x € B.
Now, note that

ma fy; — a:] < ]

so that if y € Be(z), we must have y € B. Thus B.(x) C B. This proves that 7 C 7).
Conversely, suppose that y € B, (x) and suppose that z € (y; — d,y1 + ) X -+ (yn —
0, Yn + 0) for some § > 0. We then have:

ly = =ll, < né
By the triangle inequality we have

|z = =[l, < [lz = yll, + Ily — =[l,



Now, since y € B(z), there exists n > 0 such that ||y — z[|, < r —n. Taking 6 = ¢
2nPp
we conclude

Ui
Iz = all, < v -2

and so z € By(z) and (y1 — 0,51 +9) X -+ (yn — 0, yn +6) C By(x). Thus 7, C 7

Exercise A.7 (x). Let X = C]0, 1], the set of continuous functions on the closed interval

[0,

1]. For f € X, p > 0 define:

uﬂu—(éﬂﬂmwm);

Show that X is a vector space over R, where scalar multiplication and vector addition
are defined pointwise.

Establish Hélder’s inequality:

fglly < 11LF11, gl
for p,g > 1 with p~ ! + ¢~ 1 = 1.

Show that (X, [|-[|,,) is a normed space.

Suppose p < p’. Show that:
A1, < 11l

Let 7, be the metric topology of (X, |[|[|,,). Show that if p < p”
Tp C Tpr.

Consider the sequence of functions:

nY~1 0<z<i
po={1 9205
n n — -
where n =1,2,...
i) Show that f,, € C0,1] and
ptl
0 1 T<5
i = pEl)P _ ptl
Al =y (52)" 0=
ptl
o0 v > ®

ii) By choosing v carefully, show that if p < p’ then

Tp/ ¢ Tp.



Hint: in parts b), c) follow the same steps as for the finite dimensional case in Exercise
A.6.

Solution a) If f,g € C[0,1] and A € R, then defining h : z — f(z) 4+ Ag(z) we have

b)

h € C[0,1]. The distributive property follows straightforwardly.

First suppose that f,g € C[0, 1] with |[f[[, = [|gl[, = 1. We calculate

1
£l = /0 F(2)g(x)dx
1

SK;(ﬂ?p+g%V>m

_ A1l N lgllg
p q
11
=S 4+S=1
p g

The case of general f,g follows by scaling. If f or g is identically zero then the
result is trivially true, so can assume that f is non-zero at some point zy € [0, 1].
By the continuity of f, we must have that |f(x)| > |f(x0)| /2 on some open interval
(2o — €, 20 + €) with € > 0. Thus we can estimate [|f|[, > €|f(x0)| > 0. Similarly,
if g is not identically zero then |[g[|, > 0. Thus we can define F(z) = f(z)/|[fl],,
G(z) = g(x)/|gll,, which have [|F'||, =1, [|G]|, = 1. Applying the result above, we
quickly deduce Holder’s inequality.

The homogeneity property is straightforward to verify. Next assume that f is non-zero
at some point xg € [0, 1]. By the continuity of f, we must have that |f(z)| > | f(z0)| /2
on some open interval (zo — €, zo + €) with € > 0. Thus we can estimate |[f[, >
€[f(zo)| > 0. Thus [[f[|, = 0 if and only if f = 0. To show the triangle inequality, we
estimate

1 1
If +gll2 = /O (@) + (@) do = / (@) + 9(@)] | f (@) + g(a) P~ da

1
0

= / (|f($)| |f(x) +g($)’p_1 + |g()||f(z) +g(x)‘p_1> do

Now, we apply Hdélder’s inequality to find:

/01 (@) [ £(x) + g(a) P da < |I£]1, H'f +g|p,1‘

-1
= |If1l, IIf + gll;

and similarly with f and g swapped. Thus we have

15+ gli5 < (11711, + llgll, ) 1 + gl5™"

whence the triangle inequality for the norm follows.

D
p—1



d) Since % > 1, we can apply the Holder inequality as follows:

111 = 11l
< AP 1y
; -

»—p
= I£115 -
Here we have used that [[1]|, = 1. Taking the p'" root of both sides we are done.
e) Suppose that U € 7,. Given g € U, we can find € > 0 such that
{g:llg—fll,<et CU.
Now, since ||g — f[|, < |lg — f]l,, we have that
{9:1lg—flly <et C{g:llg— fll, <e}
Thus given g € U, we have found € > 0 such that
{9:llg—flly <€ CU,
which is precisely the condition that U € 7.

f) i) The continuity is straightforward to check, since we just need to verify that there
is no jump at & = n~!, which indeed there is not. We calculate (for v # p~!)

P 1 y—1\P ' 1—7p
1fally =~ @7+ [ (2277) do

n

1— 1
i [n—p z ]
L=1p

1
1

P n’yp—p—l o n
P —1

— -p
p—1

The second term always decays for large n. The first term grows if v > (p + 1) /p,
decays if v < (p + 1)/p and for the marginal case it is equal to the constant
(p+1)/p. To deal with the case yp = 1, we calculate:

p_ L y-1yp e - ’
[ fallp =~ ()" + [ (= dz

=n P+ [n_p log :E]

3=

=n"P(1+logn)

which tends to zero for large n.



ii) To show that 7,y ¢ 7, it suffices to exhibit one element of 7, which is not in 7.
Consider the set

U=A{f:[lfll,y <1}

Clearly, we have that U € 7. Suppose that U € 7,. Then there must exist some
€ > 0 such that the set

Be=A{f:IFll, <€}

is contained in U, i.e., there is some € such that B, C U. Now, since p’ > p, there
exists some vy such that
/
+1 +1
p P

/

Consider the sequence of f,, constructed above with such a v. Clearly, we must
have that there exists N such that f, ¢ U for all n > N. On the other hand,
there exists M such that f, € B for all n > M, contradicting the assumption
that B. C U.

Exercise A.8. Verify that if (D, s) is a metric space, then the metric topology defines
the same notions of convergence and continuity as the standard definitions for a metric
space.

Exercise A.9. Let (X, 7) be a topological vector space

a) Show that if (x,,)02, is a 7-Cauchy sequence, then {z,}>% is bounded.

oo

b) Fix a local base 3. Show that a sequence ()%

B € B we can find an integer NV such that

1 is 7-Cauchy if and only if for any

Ty — Ty € B, for all n,m > N.

Solution a) Let W, be a neighbourhood of the origin. By part 1. of the proof of Lemma
B.12, we can find U C W a balanced open neighbourhood of the origin with U4+U C W.
Now, by the definition of a Cauchy sequence we can find N such that x,, —z, € U’ for
all n,m > N. Since U’ is balanced, this implies that ¢t ~!(x, — x,,) € U’ for all t > 1.
Moreover, since {z1,...,zn} is bounded, there exists s > 1 such that s~ tx,, € U for
m < N. For n > N, we have

sz, = s_l(xn —xzy) + stayeU +U cW.

Thus z,, € sW for n > 0 and we’re done.

b) If (z,) is 7-Cauchy, then since B is a neighbourhood of the origin, by the definition of
7-Cauchy there exists IV such that

Ty — T € B, for all n,m > N.
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Now suppose that for any B € 3 we can find an integer N such that
Ty — Ty € B, for all n,m > N.

Let U be any neighbourhood of the origin. Since 8 is a local base, there exists B €
with B C U. By the hypothesis, there exists IV such that for all n,n > N we have

Tp — Tm € B CU.



