
Example Sheet 1 M*P18: Fourier Analysis and Theory of Distributions

Exercise 1.1. Consider the meromorphic function

F (z) =
1

1 + z2

cos [(π − θ)z]
2 sinπz

a) Show that the poles of F (z) occur at z = ±i and z = n, for n ∈ Z, with:

Res[F,±i] = −cosh(π − θ)
4 sinhπ

, Res[F, n] =
cos(nθ)

2π(1 + n2)
.

Solution As a ratio of holomorphic functions, F is clearly meromorphic. Poles occur
when the function (1 + z2) sinπz has a zero. This can occur when either 1 + z2 = 0,
which happens if and only if z = ±i or alternatively when sinπz = 0, which occurs
precisely when z ∈ Z. We have

F (z) =
1

1 + z2

cos [(π − θ)z]
2 sinπz

=
1

z ∓ i
1

z ± i
cos [(π − θ)z]

2 sinπz

so that
F (z) =

1

z ∓ i
G±(z)

where
G±(z) =

1

z ± i
cos [(π − θ)z]

2 sinπz

is holomorphic at z = ±i. Thus

Res[F,±i] = G±(±i) =
1

±2i

cos [(π − θ)i]
2 sin±(πi)

= −cosh(π − θ)
4 sinhπ

.

b) For N ∈ N, let Γ
(N)
i be the curves

Γ
(N)
1 (t) =

(
N +

1

2

)
(1 + it) , −1 ≤ t ≤ 1

Γ
(N)
2 (t) =

(
N +

1

2

)
(−t+ i) , −1 ≤ t ≤ 1

Γ
(N)
3 (t) =

(
N +

1

2

)
(−1− it) , −1 ≤ t ≤ 1

Γ
(N)
4 (t) =

(
N +

1

2

)
(t− i) , −1 ≤ t ≤ 1

and let Γ(N) be the closed contour which results from following Γ1, Γ2, Γ3 and Γ4 in
turn. Sketch Γ(N), together with the locations of the poles of F in the complex plane.
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Solution The contour is a square centred at the origin of side length 2N +1, traversed
in an anti-clockwise direction. There are poles at ±i and along the real axis at integer
points. The contour crosses the real axis exactly half-way between a pair of poles.

c) Show that if 0 ≤ θ ≤ 2π, then: ∣∣∣∣∫
Γ(N)

F (z)dz

∣∣∣∣ ≤ C

N
,

where C is a fixed constant, independent of N .

Solution Let us write w = x+ iy with x, y ∈ R. Then we have:

sinw = sinx cosh y + i cosx sinh y

cosw = cosx cosh y − i sinx sinh y

Since sinh2 y ≤ cosh2 y, we estimate:

|cosw|2 = cos2 x cosh2 y + sin2 x sinh2 y

≤ cos2 x cosh2 y + sin2 x cosh2 y

= cosh2 y

so that |cosw| ≤ cosh (=w). Similarly, we have

|sinw|2 = sin2 x cosh2 y + cos2 x sinh2 y

≥ cos2 x sinh2 y + sin2 x cosh2 y

= sinh2 y

so |sinw| ≥ |sinh (<w)|. Finally, note that if <w = π
(
n+ 1

2

)
, n ∈ Z, we have:∣∣∣∣sin [π(N +

1

2

)
+ iy

]∣∣∣∣ = cosh y

Let us take each component of the contour in turn. On Γ
(N)
1 , we have <(z) = N + 1

2 ,
so that with the estimates above we have:∣∣∣∣cos [(π − θ)z]

sinπz

∣∣∣∣ ≤ cosh [(π − θ)=z]
cosh [π=z]

≤ 1

where in the last inequality we have used |(π − θ)=z| ≤ |π=z| and properties of cosh.
An identical argument shows that the same bound holds on Γ

(N)
3 . Now consider Γ

(N)
2

and Γ
(N)
4 . We have: ∣∣∣∣cos [(π − θ)z]

sinπz

∣∣∣∣ ≤ cosh
[
(π − θ)

(
N + 1

2

)]∣∣sinh
[
π
(
N + 1

2

)]∣∣ .
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Now, recalling that sinhx = coshx− e−x, we see that as N →∞, we have:

lim
N→∞

cosh
[
(π − θ)

(
N + 1

2

)]∣∣sinh
[
π
(
N + 1

2

)]∣∣ =

{
0 0 < θ < 2π
1 θ = 0, 2π.

Since an infinite sequence which tends to a finite limit must be bounded, we have that

cosh
[
(π − θ)

(
N + 1

2

)]∣∣sinh
[
π
(
N + 1

2

)]∣∣ ≤ K

for some constant K, independent of N .

To summarise our calculations so far, we have shown that on Γ(N) we have:∣∣∣∣cos [(π − θ)z]
sinπz

∣∣∣∣ ≤ K + 1.

Now, note that
∣∣1 + z2

∣∣ = |z + i| |z − i| and that for z ∈ Γ(N) we have |z ± i| ≥
N − 1

2 ≥
1
2N . Thus ∣∣∣∣ 1

1 + z2

∣∣∣∣ ≤ 4

N2
,

and we conclude
sup
z∈Γ(n)

= |F (z)| ≤ 2(K + 1)

N2
.

Finally, noting that the length of Γ(N) is given by∣∣∣Γ(N)
∣∣∣ = 4(2N + 1) ≤ 12N,

we conclude that∣∣∣∣∫
Γ(N)

F (z)dz

∣∣∣∣ ≤ sup
z∈Γ(n)

|F (z)| ×
∣∣∣Γ(N)

∣∣∣ ≤ 24(K + 1)

N
.

d) By applying Cauchy’s residue theorem, show that for 0 ≤ θ ≤ 2π:∣∣∣∣∣cosh(π − θ)
2 sinhπ

−
N∑

n=−N

einθ

1 + n2

∣∣∣∣∣ ≤ C

N
,

and conclude that
cosh(π − θ)

2 sinhπ
=

∞∑
n=−∞

einθ

1 + n2
,

with the sum converging uniformly in θ.

Solution We have, by the residue theorem:

1

2πi

∫
Γ(N)

F (z)dz = −cosh(π − θ)
2 sinhπ

+

N∑
n=−N

einθ

1 + n2
.

Taking the modulus and estimating the left hand side by the previous part we’re done.
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Exercise 1.2. Suppose that f ∈ C0(R) is a continuous function with period 2π, i.e.
f(θ) = f(θ + 2π). For θ ∈ [0, 2π), define:

ψ(θ) :=

∫ θ

0
f(α)

cosh(π − θ + α)

2 sinhπ
dα+

∫ 2π

θ
f(α)

cosh(−π − θ + α)

2 sinhπ
dα

and extend ψ to a function on R by periodicity: ψ(θ) = ψ(θ + 2π).

a) Show that ψ ∈ C0(R).

Solution Since an integral of a continuous function is continuous, the expression is
manifestly continuous on the intercal (0, 2π). To show ψ ∈ C0(R) we need to verify
continuity, but this is straightforward as:

ψ(0) =

∫ 2π

0
f(α)

cosh(−π + α)

2 sinhπ
dα = ψ(2π)

b) By directly differentiating the formula, show that:

ψ′(θ) = −
∫ θ

0
f(α)

sinh(π − θ + α)

2 sinhπ
dα−

∫ 2π

θ
f(α)

sinh(−π − θ + α)

2 sinhπ
dα

and show that ψ ∈ C1(R).

Solution Note that if f ∈ C1, then

F (x) =

∫ x

0
f(x, t)dt

then
F ′(x) = f(x, x) +

∫ x

0
fx(x, t)dt.

Thus for θ ∈ (0, 2π):

ψ′(θ) = f(θ)
cosh(π)

2 sinhπ
−
∫ θ

0
f(α)

sinh(π − θ + α)

2 sinhπ
dα

− f(θ)
cosh(π)

2 sinhπ
−
∫ 2π

θ
f(α)

sinh(−π − θ + α)

2 sinhπ
dα

The first term on each line cancels and the result follows. The formula for ψ′(θ)
immediately shows that ψ′ ∈ C0(0, 2π). Again, all that remains to check to see that
ψ ∈ C1(R) is the periodicity, which follows from:

ψ′(0) = −
∫ 2π

0
f(α)

sinh(−π + α)

2 sinhπ
dα = ψ′(2π).
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c) Differentiating again, show that

ψ′′(θ) = −f(θ) + ψ(θ)

Conclude that ψ ∈ C2(R) is a solution to

−ψ′′(θ) + ψ(θ) = f(θ), θ ∈ R.

Solution We again differentiate to obtain for θ ∈ (0, 2π):

ψ′′(θ) = −f(θ)
sinh(π)

2 sinhπ
+

∫ θ

0
f(α)

cosh(π − θ + α)

2 sinhπ
dα

+ f(θ)
sinh(−π)

2 sinhπ
+

∫ 2π

θ
f(α)

cosh(−π − θ + α)

2 sinhπ
dα

= f(θ) + ψ(θ)

Since ψ′′ = −f + ψ, ψ′′ is equal to a 2π-periodic continuous function, and clearly solves
the equation.

Exercise 1.3. Let φ ∈ C2(R) be 2π-periodic, i.e. φ(θ) = φ(θ + 2π), and suppose that φ
satisfies:

−φ′′(θ) + φ(θ) = 0, θ ∈ R.

a) Show that if φ attains a maximum at θ0 ∈ R, then φ(θ0) ≤ 0.

Solution At a maximum point φ′′(θ0) ≤ 0, so since equation holds ψ(θ0) = ψ′′(θ0) ≤ 0.

b) Show that if φ attains a minimum at θ0 ∈ R, then φ(θ0) ≥ 0.

Solution At a minimum point φ′′(θ0) ≥ 0, so since equation holds ψ(θ0) = ψ′′(θ0) ≥ 0.

c) Show that φ ≡ 0.

Solution Since φ is periodic and continuous it achieves its maximum and minimum
on the interval [0, 2π]. However we must have φ ≤ 0 at the maximum and φ ≥ 0 at
the minumum, which implies that φ ≡ 0.

d) Conclude that there is at most one ψ ∈ C2(R) satisfying ψ(θ) = ψ(θ+ 2π) and solving:

−ψ′′(θ) + ψ(θ) = f(θ), θ ∈ R,

where f ∈ C0(R) is a given 2π-periodic function.

Solution Suppose ψ1, ψ2 are two solutions. Then φ = ψ1−ψ2 satisfies the conditions
of the first part, and so must vanish.
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Exercise 1.4. For t ∈ R let:

χ(t) =

{
0 t ≤ 0

e−
1
t t > 0

a) Show that χ ∈ C∞(R).

Solution Clearly χ is smooth on t < 0 and t > 0, so the only thing that needs to be
shown is that all derivatives are continuous across t = 0. First, I claim that for t > 0:

χ(n)(t) = Pn

(
1

t

)
e−

1
t ,

where Pn(x) is a polynomial. Clearly this is true for n = 0. Suppose true for n, then:

χ(n+1)(t) =
d

dt

[
Pn

(
1

t

)
e−

1
t

]
= − 1

t2
P ′n

(
1

t

)
e−

1
t +

1

t2
Pn

(
1

t

)
e−

1
t

= Pn+1

(
1

t

)
e−

1
t ,

where:
Pn+1(s) = s2

[
Pn(s)− P ′n(s)

]
is a polynomial, since Pn(s) is by assumption. Thus by induction:

χ(n)(t) = Pn

(
1

t

)
e−

1
t ,

holds for all n. Now, since ‘an exponential always beats a power’, we deduce that

lim
t↘0

χ(n)(t) = 0.

Since χ(n)(t) = 0 for all t < 0, we have that χ(n) is continuous across t = 0 for all n
and we are done.

b) Show that there exists a function ψ ∈ C∞0 (Rn) such that

i) 0 ≤ ψ ≤ 1

ii) suppψ ⊂ B2(0)

iii) ψ(x) = 1 for |x| ≤ 1.

Hint: First construct a positive smooth function χ̃ : R→ [0, 1] such that

χ̃(t) =

{
0 t < −1
1 t > 1
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Solution We define ψ0 : R→ R by:

ψ0(x) = χ
(
1− x2

)
with χ as in the previous part. This is smooth and positive, and supported in [−1, 1].
Now set:

χ̃(t) =

∫ t
−∞ χ(s)ds∫∞
−∞ χ(s)ds

.

This satisfies the conditions of the hint. Now finally set ψ(x) = χ̃(3− 2 |x|2).

Exercise 1.5. a) Suppose φ ∈ E (Rn). Let {xl}∞l=1 ⊂ Rn be a sequence with xl → 0.
Show that

τxlφ→ φ, as l→∞.

in E (Rn), where τx is the translation operator defined in equation (1.2).

Solution Fix a compact K ⊂ BR(0). Dαφ is continuous on BR+1(0), hence uniformly
continuous. Fix ε > 0. By the uniform continuity of Dαφ there exists δ > 0 such that
for any x, y ∈ BR+1(0) with |x− y| < δ, we have:

|Dαφ(y)−Dαφ(x)| < ε.

There exists L such that for all l ≥ L we have |xl| < min{δ, 1}, so that for any x ∈ K
we have: x− xl ∈ BR+1(0) and |xl| < δ. Thus:

|Dαφ(x− xl)−Dαφ(x)| < ε.

Since this holds for any x ∈ K, we have:

sup
x∈K
|Dαφ(x− xl)−Dαφ(x)| < ε.

This is precisely the statement that Dατxlφ→ Dαφ uniformly in K. Since we have
uniform convergence of Dατxlφ on arbitrary compact subsets, we have convergence in
E (Rn).

b) Suppose φ ∈ E (Rn), show that

∆h
i φ→ Diφ, as h→ 0,

in E (Rn), where ∆h
i is the difference quotient defined in Example 2.

Solution Fix a compact K ⊂ BR(0), and suppose that |h| < 1. We have by the mean
value theorem that for each x ∈ K there exists sx with |sx| < |h| such that:

Dα∆h
i φ(x) =

Dαφ(x+ hei)−Dαφ(x)

h
= DiD

αφ(x+ sxei)
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DiD
αφ is continuous on BR+1(0), hence uniformly continuous. Fix ε > 0. By the

uniform continuity of Dαφ there exists δ > 0 such that for any x, y ∈ BR+1(0) with
|x− y| < δ, we have:

|DiD
αφ(y)−DiD

αφ(x)| < ε.

Take |h| < min{δ, 1}. Then for any x ∈ K we have x+ sxei ∈ BR+1(0) and |sxei| =
|sx| < δ. Thus∣∣∣Dα∆h

i φ(x)−DαDiφ(x)
∣∣∣ = |DiD

αφ(x+ sxei)−DiD
αφ(x)| < ε

We thus conclude that for h sufficiently small,

sup
x∈K

∣∣∣Dα∆h
i φ(x)−DαDiφ(x)

∣∣∣ < ε.

Which implies that we have uniform convergence of Dα∆h
i φ on arbitrary compact sets,

thus convergence in E (Rn).

Exercise 1.6. a) Show that S is a vector subspace of E (Rn). Show that if {φj}∞j=1 is a
sequence of rapidly decreasing functions which tends to zero in S , then φj → 0 in
E (Rn).

Solution To see that S is a vector subspace it’s enough to verify that φ1 + λφ2 ∈ S
whenever φ1, φ2 ∈ S and λ ∈ C. For any multi-index α and N ∈ N we have:

sup
x∈Rn

∣∣(1 + |x|)NDα [φ1 + λφ2] (x)
∣∣ ≤ sup

x∈Rn

[∣∣(1 + |x|)NDαφ1

∣∣+ |λ|
∣∣(1 + |x|)NDαφ2

∣∣]
≤ sup

x∈Rn

∣∣(1 + |x|)NDαφ1(x)
∣∣

+ |λ| sup
x∈Rn

∣∣(1 + |x|)NDαφ(x)
∣∣ <∞

If φj → 0 in S , then in particular we have that Dαφj → 0 uniformly in Rn (setting
N = 0). Thus Dαφj → 0 uniformly in any compact subset of Rn, so that Dαφj → 0
in E (Rn).

b) Show that D(Rn) is a vector subspace of S . Show that if {φj}∞j=1 is a sequence of
compactly supported functions which tends to zero in D(Rn) then φj → 0 in S .

Solution Clearly if φ has compact support, then φ ∈ S . Since suppφ1 + λφ2 ⊂
suppφ1 +suppφ2, we have that D(Rn) is closed and hence a subspace of S . If φj → 0
in D(Rn), then there exists R such that suppφj ⊂ BR(0). We then have that:

sup
x∈Rn

∣∣(1 + |x|)NDαφj(x)
∣∣ ≤ (1 +R)N sup

x∈BR(0)
|Dαφj(x)| → 0,

since we know that Dαφj → 0 uniformly.
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c) Give an example of a sequence {φj}∞j=1 ⊂ C∞0 (Rn) such that

i) φj → 0 in S , but φj has no limit in D(Rn).

Solution We can take, for example:

φj(x) = e−j
2
φ (x− jei)

for some (non-zero) φ ∈ D(Rn).

ii) φj → 0 in E (Rn), but φj has no limit in S .

Solution We can take, for example:

φj(x) = φ (x− jei)

for some (non-zero) φ ∈ D(Rn).

Exercise 1.7. a) Suppose φ ∈ S . Let {xl}∞l=1 ⊂ Rn be a sequence with xl → 0. Show
that

τxlφ→ φ, as l→∞.

in S , where τx is the translation operator defined in equation (1.2).

Solution Fix N ∈ N and α a multi-index. We note that, by the fundamental theorem
of Calculus, we have:

|Dατxlφ(x)−Dαφ(x)| =
∣∣∣∣∫ 1

0

d

dt
Dαφ(x− xlt)dt

∣∣∣∣
=

∣∣∣∣∫ 1

0
xl ·DDαφ(x− xlt)dt

∣∣∣∣
≤ |xl| sup

t∈(0,1)
|DDαφ(x− xlt)| .

Now, recall that since φ ∈ S , there exists a constant C (depending on N , α) such
that:

|DiD
αφ(x− xlt)| ≤

C

(1 + |x− xlt|)N

Now, if |xl| < 1, then:

1 + |x− xlt| ≥ 1 + |x| − |xl| t ≥
1

2
+ |x| ≥ 1

2
(1 + |x|).

Thus for |xl| < 1, we have

|DiD
αφ(x− xlt)| ≤

2NC

(1 + |x|)N
.
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We conclude that:

(1 + |x|)N |Dατxlφ(x)−Dαφ(x)| ≤ |xl|N2NC

Since xl → 0 we conclude that:

sup
x∈Rn

(1 + |x|)N |Dατxlφ(x)−Dαφ(x)| → 0

and thus τxlφ→ φ in S .

b) Suppose φ ∈ S , show that

∆h
i φ→ Diφ, as h→ 0,

in S , where ∆h
i is the difference quotient defined in Example 2.

Solution Fix N ∈ N and α a multi-index. We have by the mean value theorem that
for each x ∈ Rn there exists sx with |sx| < |h| such that:

Dα∆h
i φ(x) =

Dαφ(x+ hei)−Dαφ(x)

h
= DiD

αφ(x+ sxei)

Therefore, ∣∣∣Dα∆h
i φ(x)−DαDiφ(x)

∣∣∣ = |DiD
αφ(x+ sxei)−DiD

αφ(x)|

Again, as in the previous part, we can make use of the fundamental theorem of calculus
to deduce that:∣∣∣Dα∆h

i φ(x)−DαDiφ(x)
∣∣∣ ≤ |sx| sup

t∈(0,1)
|DiDiD

αφ(x+ tsxei)|

≤ |h| sup
t∈(0,1)

|DiDiD
αφ(x+ thei)|

An argument precisely as for the previous part shows that as h→ 0:

sup
x∈Rn

(1 + |x|)N
∣∣∣Dα∆h

i φ(x)−DαDiφ(x)
∣∣∣→ 0.

so that ∆h
i φ(x)→ Diφ(x) in S .
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Exercise 2.1 (*). Suppose that we work over Rn and that f, g, h ∈ S .

a) Show that for any multi-index α, we have that Dαf ∈ Lp(Rn) for 1 ≤ p <∞, i.e. that

||Dαf ||Lp(Rn) =

(∫
Rn
|Dαf(x)|p dx

) 1
p

<∞.

Solution Note that f ∈ S in particular implies that for any N and multi-index α
there exists a constant Cα,N such that for x ∈ Rn we have:

|f(x)| ≤
Cα,N

(1 + |x|)N
.

Now, we estimate:

||Dαf ||pLp(Rn =

∫
Rn
|Dαf(x)|p dx

≤ (Cα,N )p
∫
Rn

1

(1 + |x|)Np
dx

≤ (Cα,N )p σn−1

∫ ∞
0

1

(1 + r)Np
rn−1dr

Setting N > p−1(n+ 1), we have∫ ∞
0

1

(1 + r)Np
rn−1dr ≤

∫ ∞
0

1

(1 + r)n+1
rn−1dr =

1

n

[
rn

(1 + r)n

]∞
0

=
1

n
,

so that
||Dαf ||Lp(Rn <∞.

b) Define
F : Rn × Rn,

(x, y) 7→ f(x)g(y − x).

Show that F ∈ L1(Rn × Rn).

Solution First note that

|x|+ |y − x| ≥ |x|+ 1

2
|y − x| ≥ 1

2
(|x|+ |y|)

furthermore:

1

1 + |x|
1

1 + |z|
=

1

1 + |x|+ |y|+ |x| |y|
≤ 1

1 + |x|+ |y|
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Combining these two facts, we deduce that

1

(1 + |x|)N
1

(1 + |y − x|)N
≤ 2N

1 + |x|+ |y|
.

Now, let Z = (x, y) ∈ R2n. We have, using the fact that f, g ∈ S :

|F (Z)| = |f(x)g(y − x)|

≤ CN
(1 + |x|)N

C ′N
(1 + |y − x|)N

≤ CNC ′N
2N

1 + |x|+ |y|

= 2NCNC
′
N

1

(1 + |Z|)N
.

By taking N large enough, we can show using the same argument as in the previous
part that F ∈ L1(R2n).

c) For each x ∈ Rn, set

Gx : Rn × Rn,
(y, z) 7→ f(y)g(z)h(x− y − z).

Show that Gx ∈ L1(Rn × Rn).

Solution As in the previous part, we have:

|g(z)h(x− y − z)| ≤ CN
(1 + |z|+ |x− y|)N

≤
C ′N

(1 + |z|+ |x|+ |y|)N

So that, setting Z = (y, z), and using |f | < C, we have:

|Gz(Z)| ≤
C ′′N

(1 + |z|+ |x|+ |y|)N
≤

C ′N
(1 + |Z|)N

for any N and by a similar argument to previously, Gz ∈ L1(R2n).

Exercise 2.2. Show that Theorem 1.10 holds under the alternative hypotheses:

a) f ∈ L1(Rn), g ∈ Ck(Rn) with supRn |Dαg| <∞ for all |α| ≤ k.

Solution 1. First we establish the result for k = 0. We need to show that if f ∈ L1(Rn)
and g ∈ C0(Rn) is bounded then f ? g is continuous. To show this, it suffices to
show that f ? g(x − zj) → f ? g(x) for any sequence {zj}∞j=1 with zj → 0. Now,
note that

f ? g(x− zj) =

∫
Rn
f(y)g(x− zj − y)dy =

∫
Rn
f(y)τzjg(x− y)dy.
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Now, sending j →∞, we are done, so long as we can justify interchanging the limit
and the integral. Note that for any fixed x and all j:∣∣f(y)τzjg(x− y)

∣∣ ≤ sup
Rn
|g| |f(y)|

Since f ∈ L1(Rn) and g is bounded the right hand side is integrable, and so by the
dominated convergence theorem:

lim
j→∞

f ? g(x− zj) =

∫
Rn

lim
j→∞

f(y)τzjg(x− y)dy =

∫
Rn
f(y)g(x− y)dy = f ? g(x).

2. Now suppose that f ∈ L1(Rn) and g ∈ C1(Rn) with g, Djg bounded. Clearly
f ?Dig is continuous by the previous argument. To show f ? g ∈ C1(Rn), it suffices
to show that for any x ∈ Rn and any sequence {hj}∞j=1 ⊂ R with hj → 0 we have:

lim
j→∞

∆
hj
i f ? g(x) = f ? Dig(x).

Note that

∆
hj
i f ? g(x) =

f ? g(x+ hjei)− f ? g(x)

h

=

∫
Rn
f(y)

(
g(x+ hjei − y)− g(x− y)

h

)
dy

=

∫
Rn
f(y)∆

hj
i g(x− y)dy

so that again we are done provided we can send j →∞ and interchange the limit
and the integral. We note that:

∆
hj
i g(x) =

1

hj

∫ hj

0

d

dt
[g(x+ tei)] dt =

1

hj

∫ hj

0
Dig(x+ tei)dt

so we can estimate: ∣∣∣∆hj
i g(x)

∣∣∣ ≤ sup
Rn
|Dig(x)|

An argument precisely analogous to the previous part permits us to apply DCT
and conclude that:

lim
j→∞

∆
hj
i f ? g(x) =

∫
Rn

lim
j→∞

f(y)∆
hj
i g(x− y)dy = f ? Dig(x).

3. The case where g ∈ Ck(Rn) with k > 1 now follows by a simple induction.

b) f ∈ L1(Rn) with supp f compact, g ∈ Ck(Rn).



4

Solution 1. First we establish the result for k = 0. We need to show that if f ∈ L1(Rn)
with compact support and g ∈ Ck(Rn) then f ? g is continuous. To show this, it
suffices to show that f ? g(x− zj)→ f ? g(x) for any sequence {zj}∞j=1 with zj → 0.
Now, note that

f ? g(x− zj) =

∫
Rn
f(y)g(x− zj − y)dy =

∫
Rn
f(y)τzjg(x− y)dy.

Now, sending j →∞, we are done, so long as we can justify interchanging the limit
and the integral. Note that for any fixed x and all j:

∣∣f(y)τzjg(x− y)
∣∣ ≤ ( sup

BR(x)
|g|

)
|f(y)|

where R is sufficiently large that supp f + hj ⊂ BR(0) for all j. Since f ∈ L1(Rn)
the right hand side is integrable, and so by the dominated convergence theorem:

lim
j→∞

f ? g(x− zj) =

∫
Rn

lim
j→∞

f(y)τzjg(x− y)dy =

∫
Rn
f(y)g(x− y)dy = f ? g(x).

2. Now suppose that f ∈ L1(Rn) has compact support and g ∈ C1(Rn). Clearly
f ?Dig is continuous by the previous argument. To show f ? g ∈ C1(Rn), it suffices
to show that for any x ∈ Rn and any sequence {hj}∞j=1 ⊂ R with hj → 0 we have:

lim
j→∞

∆
hj
i f ? g(x) = f ? Dig(x).

Note that

∆
hj
i f ? g(x) =

f ? g(x+ hjei)− f ? g(x)

h

=

∫
Rn
f(y)

(
g(x+ hjei − y)− g(x− y)

h

)
dy

=

∫
Rn
f(y)∆

hj
i g(x− y)dy

so that again we are done provided we can send j →∞ and interchange the limit
and the integral. By the argument in the proof of part a) which allows us to bound
the difference quotient by the derivative, we have:∣∣∣f(y)∆

hj
i g(x− y)

∣∣∣ ≤ ( sup
BR(x)

|Dig|

)
|f(y)|

this allows us to invoke the DCT and deduce that:

lim
j→∞

∆
hj
i f ? g(x) =

∫
Rn

lim
j→∞

f(y)∆
hj
i g(x− y)dy = f ? Dig(x).

3. The case where g ∈ Ck(Rn) with k > 1 now follows by a simple induction.
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Exercise 2.3. a) Prove the following identities for r, s > 0 and x ∈ Rn:

i) Br(x) +Bs(0) = Br+s(x)

ii) Br(x) +Bs(0) = Br+s(x)

iii) Br(x) +Bs(0) = Br+s(x)

Solution i) Suppose we have v = z + w where z ∈ Br(x) and w ∈ Bs(0), then
|x− z| < r and |w| < s. Thus:

|v − x| = |z + w − x| ≤ |z − x|+ |w| < r + s.

Thus Br(x) + Bs(0) ⊂ Br+s(x). Conversely, suppose that v ∈ Br+s(x). Then
|v − x| = l < r + s. Define:

z = x+
r

r + s
(v − x), w =

s

r + s
(v − x).

We have |z − x| < r and |w| < s and v = z + w. Thus v ∈ Br(x) + Bs(0) and
Br+s(x) ⊂ Br(x) +Bs(0).

ii) Suppose we have v = z + w where z ∈ Br(x) and w ∈ Bs(0), then |x− z| ≤ r
and |w| < s. Thus:

|v − x| = |z + w − x| ≤ |z − x|+ |w| < r + s.

Thus Br(x) + Bs(0) ⊂ Br+s(x). Conversely, suppose that v ∈ Br+s(x). Then
|v − x| = l < r + s. Define:

z = x+
r

r + s
(v − x), w =

s

r + s
(v − x).

We have |z − x| < r and |w| < s and v = z + w. Thus v ∈ Br(x) + Bs(0) and
Br+s(x) ⊂ Br(x) +Bs(0).

iii) Suppose we have v = z + w where z ∈ Br(x) and w ∈ Bs(0), then |x− z| ≤ r
and |w| ≤ s. Thus:

|v − x| = |z + w − x| ≤ |z − x|+ |w| ≤ r + s.

Thus Br(x) + Bs(0) ⊂ Br+s(x). Conversely, suppose that v ∈ Br+s(x). Then
|v − x| = l ≤ r + s. Define:

z = x+
r

r + s
(v − x), w =

s

r + s
(v − x).

We have |z − x| ≤ r and |w| ≤ s and v = z + w. Thus v ∈ Br(x) + Bs(0) and
Br+s(x) ⊂ Br(x) +Bs(0)

Suppose that A,B ⊂ Rn. Show that:

b) If one of A or B is open, then so is A+B.
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Solution Suppose A is open, and that v = A+B. We must have v = a+ b for some
a ∈ A and b ∈ B. Since A is open, there exists ε > 0 such that Bε(a) ⊂ A. Thus for
any x with |x− a| < ε we know x ∈ A. Therefore we have:

A+B ⊃ {x+ b : |x− a| < ε} = {z : |z − (a+ b)| < ε} = Bε(a+ b)

Thus A+B is open, since it contains an open ball about any point.

c) If A and B are both bounded, then so is A+B.

Solution

Since A and B are both bounded, there exists R > 0 such that A ⊂ BR(0) and
B ⊂ BR(0). If a ∈ A and b ∈ B we find:

|a+ b| ≤ |a|+ |b| < R+R

so that A+B ⊂ B2R(0).

d) If A is closed and B is compact, then A+B is closed.

Solution Suppose {xj}∞j=1 ⊂ Rn is a Cauchy sequence in A+B. By the completeness
of Rn, we know that xj converges, to a point x ∈ Rn. To establish that A + B is
closed, we need to show that x ∈ A+B. For each xj , there exist aj , bj such that:

xj = aj + bj .

Since B is compact, we can find a convergent subsequence {bjk}∞k=1 ⊂ B such that
limk→∞ bjk = b ∈ B. Now consider the sequence:

ajk = xjk − bjk

This is Cauchy, since both bjk and xjk are convergent, hence since A is closed, ajk →
a ∈ A. We therefore have that:

x = lim
j→∞

xj = limk→∞xjk = a+ b

with a ∈ A and b ∈ B, thus x ∈ A+B.

e) If A and B are both compact, then so is A+B.

Solution Combining the two previous results, we know that the sum of two closed
and bounded sets is closed and bounded. We’re done by Heine-Borel.

Exercise 2.4. Show that if f ∈ Ck0 (Rn) and g ∈ C l0(Rn) then f ?g ∈ Ck+l
0 (Rn). Conclude

that D(Rn) is closed under convolution.
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Solution If α is a multi-index with |α| ≤ k + l, we can write α = α1 + α2 with |α1| ≤ k
and α2 ≤ l. We then have (applying Theorem 1.10 twice as well as and the symmetry of
the convolution):

Dα(f ? g) = Dα1Dα2(f ? g) = Dα1(f ? Dα2g) = Dα1f ? Dα2g.

Since both functions have compact support, the convolution also has compact support
and we’re done.

Exercise 2.5 (*). Suppose that F : Rn×Rn → R is a positive integrable simple function,

a) Show that Minkowski’s integral inequality holds for the case p = 1:∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣ dy ≤ ∫
Rn

∫
Rn
|F (x, y)| dydx

b) Next prove Young’s inequality: if a, b ∈ R+ and p, q > 1 with p−1 + q−1 = 1 then:

ab ≤ ap

p
+
bq

q

Hint: set t = p−1, consider the function log [tap + (1− t)bq] and use the concavity of
the logarithm

c) With p, q > 1 such that p−1 + q−1 = 1, show that if ||f ||p = 1 and ||g||q = 1 then∫
Rn
|f(x)g(x)| dx ≤ 1.

Deduce Hölder’s inequality:∫
Rn
|f(x)g(x)| dx ≤ ||f ||p ||g||q , for all f ∈ Lp(Rn), g,∈ Lq(Rn).

d) Set G(y) =
(∫

Rn F (x, y)dx
)p−1

i) Show that if q = p
p−1 :

||G||Lq(Rn) =

∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p−1

Lp(Rn)

ii) Show that: ∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p
Lp(Rn)

=

∫
Rn

(∫
Rn
G(y)F (x, y)dy

)
dx

iii) Applying Hölder’s inequality, deduce:∣∣∣∣∣∣∣∣∫
Rn
F (x, ·)dx

∣∣∣∣∣∣∣∣p
Lp(Rn)

≤ ||G||Lq(Rn)

∫
Rn
||F (x, ·)||Lp(Rn) dx
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e) Deduce that Minkowski’s integral inequality[∫
Rn

∣∣∣∣∫
Rn
F (x, y)dx

∣∣∣∣p dy] 1
p

≤
∫
Rn

[∫
Rn
|F (x, y)|p dy

] 1
p

dx

holds for any measurable function F : Rn × Rn → C, where 1 ≤ p <∞.

Exercise 2.6. a) Show that δx, as defined in Example 7 is continuous and linear, hence
a distribution. Find the order.

Solution Let x ∈ Ω, where Ω ⊂ Rn is open. Suppose φ1, φ2 ∈ D(Ω) and a ∈ C. Then:

δx[φ1 + aφ2] = φ1(x) + aφ2(x) = δx[φ1] + aδx[φ2]

Thus δx : D(Ω)→ C is linear. Fix a compact K ⊂ Ω. We certainly have:

|δx[φ]| = |φ(x)| ≤ sup
x∈K
|φ(x)|

for all φ ∈ C∞0 (K). Thus δx is continuous. Since we can control δx[φ] by |φ(x)| without
any derivatives on any K, we have that δx is order 0.

b) Show that Tf , as defined in Example 7 is continuous and linear, hence a distribution.
Find the order.

Solution Let Ω ⊂ Rn is open. Suppose φ1, φ2 ∈ D(Ω) and a ∈ C. Suppose f ∈
L1
loc.(Ω). Then:

Tf [φ1 + aφ2] =

∫
Ω
f(x) (φ1(x) + aφ2(x)) dx

=

∫
Ω
f(x)φ1(x)dx+ a

∫
Ω
f(x)φ2(x)dx = Tf [φ1] + aTf [φ2].

Now, suppose K ⊂ Ω is compact and φ ∈ C∞0 (K). Then:

|Tf [φ]| =
∣∣∣∣∫

Ω
f(x)φ(x)dx

∣∣∣∣ ≤ sup
y∈K
|φ(y)|

∣∣∣∣∫
Ω
f(x)dx

∣∣∣∣ = CK sup
y∈K
|φ(y)|

we conclude that Tf is continuous, and has order 0.

c) By constructing a suitable sequence of smooth functions show that the order of P.V.
(

1
x

)
is one.

Solution Recall that for φ ∈ D(R) we have:

P.V.

(
1

x

)
[φ] = lim

ε→0

[∫ −ε
−∞

φ(x)

x
dx+

∫ ∞
ε

φ(x)

x
dx

]
.
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We saw in lectures that if φ ∈ C∞0 (BR(0)) then:∣∣∣∣P.V.(1

x

)
[φ]

∣∣∣∣ ≤ 4R sup
Rn

∣∣φ′∣∣ .
To show that the order of P.V.

(
1
x

)
is one we need to establish that there exists no

constant CR such that: ∣∣∣∣P.V.(1

x

)
[φ]

∣∣∣∣ ≤ CR sup
Rn
|φ| . (1)

holds for all φ ∈ C∞0 (BR(0)). Suppose δ ∈ (0, 1
2) and let ψδ ∈ C∞c (R) be a function

satisfying:

i) 0 ≤ ψδ ≤ 1.
ii) ψδ(x) = 0 for x < δ and x > 2.
iii) ψδ(x) = 1 for 2δ < x < 1

We’ve seen in lectures how such a function may be constructed. We have that:∣∣∣∣P.V.(1

x

)
[φ]

∣∣∣∣ =

∫ 2

δ

ψδ(x)

x
dx ≥

∫ 1

2δ

1

x
dx =

1

4δ2
− 1.

Suppose that (??) holds for some CR. Then we conclude that:

1

4δ2
− 1 ≤ C2

holds for all δ ∈ (0, 1
2). Clearly this is absurd, so P.V.

(
1
x

)
has order 1.

Exercise 2.7. Suppose f ∈ L1
loc.(Ω). Take φε as in Theorem 1.13, and define for x with

d(x, ∂Ω) ≥ ε:
fε(x) := Tf

[
τxφ̌ε

]
.

Show that for any compact K ⊂ Ω:

||fε − f ||L1(K) → 0

as ε→ 0.
[Hint: follow the proof of Theorem 2.2, but use part b) of Theorem 1.13]

Solution Fix K ⊂ Ω compact. Recall that by Lemma 1.14, there exists χ ∈ C∞0 (Ω) such
that χ = 1 on K + Bδ(0) for some δ > 0. Take ε < δ. Then, since suppφε ⊂ Bε(0) we
have for x ∈ K:

fε(x) =

∫
Ω
f(y)τxφ̌ε(y)dy

=

∫
Ω
f(y)φε(x− y)dy

=

∫
Rn
χ(y)f(y)φε(x− y)dy

= φε ? (χf).
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Here we have used the fact that when |x− y| < ε we have χ = 1 to insert the cut-off
function without altering the integral. Now, since χ is smooth, and f ∈ L1

loc.Ω, we have
χf ∈ L1(Rn), so as ε→ 0, we have by Theorem 1.13 that:

||fε − χf ||L1(Rn) → 0

Now since χ = 1 on K we deduce:

||fε − f ||L1(K) = ||fε − χf ||L1(K) ≤ ||fε − χf ||L1(Rn) → 0

which is the result we require.

Exercise 2.8. a) Show that if f1, f2 ∈ C0(Ω) and a ∈ C∞(Ω), then

aTf1 + Tf2 = Taf1+f2

Solution Let φ ∈ D(Ω). We calculate:

(aTf1 + Tf2) [φ] = aTf1 [φ] + Tf2 [φ]

= Tf1 [aφ] + Tf2 [φ]

=

∫
Ω
f1(x)a(x)φ(x)dx+

∫
Ω
f2(x)φ(x)dx

=

∫
Ω

(f1(x)a(x) + f2(x))φ(x)dx = Taf1+f2 [φ].

Since φ is arbitrary the result follows.

b) Show that if f ∈ Ck(Ω) then
DαTf = TDαf

for |α| ≤ k. Deduce that ι ◦Dα = Dα ◦ ι.

Solution Let φ ∈ D(Ω). We calculate:

DαTf [φ] = (−1)|α| Tf [Dαφ]

= (−1)|α|
∫

Ω
f(x)Dαφ(x)dx

=

∫
Ω
Dαf(x)φ(x)dx = TDαf [φ]

where we have used the compact support of φ to integrate by parts. Since φ is
arbitrary the result follows.
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c) Deduce that if f ∈ Ck(Ω) then∑
|α|≤k

aαD
αTf = TLf .

where
Lf =

∑
|α|≤k

aαD
αf

Solution This follows immediately from the two previous results.

Exercise 2.9. a) Show that for f, g ∈ C0
0 (Rn):

Tf?g = Tf ? Tg.

Solution Let φ ∈ D(Rn). Recall that Tf ? φ = f ? φ, so:

Tf?g ? φ = (f ? g) ? φ = f ? (g ? φ) = Tf ? (g ? φ)

= Tf ? (Tg ? φ) = (Tf ? Tg) ? φ

Here we have used that the convolution of functions is associative, as well as the
definition of convolution of distributions.

b) Show that convolution is linear in both of its arguments, i.e. if ui ∈ D ′(Rn) and
u3, u4 have compact support then

(u1 + au2) ? u3 = u1 ? u3 + au2 ? u3

and
u1 ? (u3 + au4) = u1 ? u3 + au1 ? u4

where a ∈ C is a constant.

Solution First note that if φ ∈ D(Rn) is a test function, then:

(u1 + au2) ? φ(x) = (u1 + au2)[τxφ̌]

= u1[τxφ̌] + au2[τxφ̌]

= u1 ? φ(x) + au2 ? φ(x).

Moreover if φ1, φ2 are both test functions, then:

u ? (φ1 + aφ2) = u
[
τxφ̌1 + aτxφ̌2

]
= u

[
τxφ̌1

]
+ au

[
τxφ̌2

]
= u ? φ1 + au ? φ2.
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We deduce that:

((u1 + au2) ? u3) ? φ = (u1 + au2) ? (u3 ? φ)

= u1 ? (u3 ? φ) + au2 ? (u3 ? φ)

= (u1 ? u3) ? φ+ a(u2 ? u3) ? φ

= (u1 ? u3 + au2 ? u3) ? φ.

Since φ was arbitrary, the result follows. For the second part, we calculate:

(u1 ? (u3 + au4)) ? φ = u1 ? ((u3 + au4) ? φ)

= u1 ? (u3 ? φ+ au4 ? φ)

= u1 ? (u3 ? φ) + au1 ? (u4 ? φ)

= (u1 ? u3) ? φ+ a(u1 ? u4) ? φ

= (u1 ? u3 + au1 ? u4) ? φ

Since φ was arbitrary, the result follows.

Exercise 2.10. a) Show that if φ ∈ D(Rn) then

δ0 ? φ = φ

Solution
δ0 ? φ(x) = δ0

[
τxφ̌
]

= τxφ̌(0) = φ(x− 0) = φ(x).

b) Show that if u ∈ D ′(Rn) has compact support, then

δ0 ? u = u

Solution Let φ ∈ D(Rn) be arbitrary. Then:

(δ0 ? u) ? φ = δ0 ? (u ? φ) = u ? φ

Since φ was arbitrary the result follows.
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Exercise 3.1. a) Suppose that {φj}∞j=1 ⊂ E (Ω) is a sequence such that φj → φ in E (Ω),
and χ ∈ D(Ω). Show that

χφj → χφ in D(Ω).

Solution Since φj → φ in E (Ω), we know that for any compact K ⊂ Ω and any α we
have:

sup
x∈K
|Dαφj(x)−Dαφ(x)| → 0.

Now consider χφj . Clearly supp (χφj) ⊂ suppχ, since χφj must vanish wherever χ
vanishes. Since χ has compact support, there exists a compact K ′ with supp (χφj) ⊂
K ′. Further, by the Leibniz rule, we have (for some α):

Dαχφj =
∑

{β:β≤α}

Cα,βD
βχDα−βφj ,

where Cα,β are some combinatorial constants1. Thus:

Dα(χφj)(x)−Dα(χφ)(x) =
∑

{β:β≤α}

Cα,βD
βχ(x)

[
Dα−βφj(x)−Dα−βφj(x)

]
.

We can then estimate:

|Dα(χφj)(x)−Dα(χφ)(x)| ≤ sup
x∈K′

∑
{β:β≤α}

Cα,β

∣∣∣Dβχ(x)
∣∣∣ ∣∣∣Dα−βφj(x)−Dα−βφj(x)

∣∣∣ .
≤

∑
{β:β≤α}

Mαβ sup
x∈K′

∣∣∣Dα−βφj(x)−Dα−βφj(x)
∣∣∣ .

Where
Mαβ = Cα,β sup

x∈K′

∣∣∣Dβχ(x)
∣∣∣ .

Thus, we have:

sup
x∈K′

|Dα(χφj)(x)−Dα(χφ)(x)| ≤
∑

{β:β≤α}

Mαβ sup
x∈K′

∣∣∣Dα−βφj(x)−Dα−βφj(x)
∣∣∣ .

The right hand side is a finite sum of terms tending to zero. Thus we’ve established
that the support of χφj is contained in K ′, a compact set, for all j, and moreover, we
have:

sup
x∈K′

|Dα(χφj)(x)−Dα(χφ)(x)| → 0.

1β ≤ α means β1 ≤ α1 and β2 ≤ α2, etc.
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b) Show that if ψ ∈ E (Ω), then there exists a sequence {φj}∞j=1 ⊂ D(Ω) such that φj → ψ
in E (Ω).
[Hint: Take an exhaustion of Ω by compact sets and apply Lemma 1.14]

Solution Suppose that {Ki}∞i=1 is an exhaustion of Ω by compact sets. That is to say,
Ki ⊂ Ω is compact and we have:

Ki ⊂ K◦i+1,
∞⋃
i=1

Ki = Ω.

By Lemma 1.14, for each i we can find a χi ∈ D(Ω) such that χi(x) = 1 for all x ∈ Ki.
Clearly χiψ ∈ D(Ω), since supp (χiψ) ⊂ suppχi, which is compact. Now let E ⊂ Ω be
any fixed compact set. For i ≥ I, where I is sufficiently large, we have E ⊂ Ki. To see
this, note that {K◦i }∞i=1 forms an open cover of Ω and hence of E, so must admit a finite
subcover of E. Now, for i ≥ I, we have that χi ≡ 1 on E. Thus:

sup
x∈E
|Dα(χiψ)−Dαψ| = 0

so in particular, Dα(χiψ) −Dαψ → 0. This is precisely the criterion that χiψ → ψ in
E (Ω).

Exercise 3.2. a) Prove Lemma 2.11.
[Hint: You should argue in a similar fashion to the proof of Lemma 2.9]

Solution First we show that (2.10) implies that u is continuous. Pick a sequence
{φj}∞j=1 ⊂ S (Rn) which converges to zero in S (Rn). This means that for all α and
any M ≥ 0 we have

sup
x∈Rn

∣∣(1 + |x|)MDαφ(x)
∣∣→ 0.

In particular, this holds with M = N and for all α with |α| ≤ k, so as j →∞ we have:

|u[φj ]| ≤ C sup
x∈Rn;|α|≤k

∣∣(1 + |x|)NDαφ(x)
∣∣→ 0,

and so u is continuous.

To show the opposite implication, we assume that (2.10) does not hold for any k,N,C.
Since (2.10) does not hold for any k,N,C, in particular it does not hold for k = j,
N = j and C = j. Thus there must exist φj ∈ S (Rn) such that:

|u[φj ]| > j sup
x∈Rn;|α|≤j

∣∣(1 + |x|)jDαφj(x)
∣∣ .

We define:

ψj(x) =
φj(x)

|u[φj ]|
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Clearly ψj ∈ S (Rn). We claim that ψj → 0 in S (Rn). To see this, fix M ≥ 0 and a
multiindex α. We have, for j ≥M and j ≥ |α|:

sup
x∈Rn

∣∣(1 + |x|)MDαφj(x)
∣∣ ≤ sup

x∈Rn;|β|≤j

∣∣∣(1 + |x|)jDβφj(x)
∣∣∣

as a result, we can estimate:

sup
x∈Rn

∣∣(1 + |x|)MDαψj(x)
∣∣ =

1

|u[φj ]|
sup
x∈Rn

∣∣(1 + |x|)MDαφj(x)
∣∣

<
supx∈Rn

∣∣(1 + |x|)MDαφj(x)
∣∣

j supx∈Kj ;|β|≤j |Dβφj(x)|
<

1

j

We conclude that Dαψj tends to zero on Rn, but since α and K were arbitrary, this
implies ψj → 0 in S (Rn). However, u[ψj ] 6→ 0 since |u[ψj ]| = 1 by construction. Thus
u is not continuous. This establishes that if u is continuous, then (2.10) must hold for
some k,N,C.

b) Show that we have the inclusions:

E ′(Rn) ⊂ S ′ ⊂ D ′(Rn).

Solution Suppose {φj}∞j=1 ⊂ D(Rn) is a sequence such that φj → 0 in D(Ω), then
there exists an R > 0 such that suppφj ⊂ BR(0) for all j and moreover:

sup
x∈BR(0)

|Dαφj(x)| → 0.

for any multi-index α. Now, since functions of compact support are necessarily rapidly
decreasing, we have {φj}∞j=1 ⊂ S (Rn). For any N ≥ 0 and α we can estimate:

sup
x∈Rn

∣∣(1 + |x|)NDαφj(x)
∣∣ ≤ (1 +R)N sup

x∈BR(0)

|Dαφj(x)| → 0.

Now suppose that u ∈ S ′. Since D(Rn) ⊂ S , we can certainly make sense of
u : D(Rn)→ C as a linear operator. Moreover, if {φj}∞j=1 ⊂ D(Rn) is a sequence such
that φj → 0 in D(Ω), then we’ve just established that φj → 0 in S . As a consequence,
we have that u[φj ] → 0 by the continuity of u : S → C. Thus u : D(Rn) → C is
continuous, so we have shown that S ′ ⊂ D ′(Rn).

Now suppose {φj}∞j=1 ⊂ S (Rn) is a sequence such that φj → 0 in S (Ω), then for any
N ≥ 0 and any multi-index α, we have:

sup
x∈Rn

∣∣(1 + |x|)NDαφj(x)
∣∣→ 0.

Since functions in S are necessarily smooth, we have {φj}∞j=1 ⊂ E (Rn). If K is any
compact set, and α any multi-index then:

sup
x∈K
|Dαφj(x)| ≤ sup

x∈Rn
|Dαφj(x)| → 0.
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So a φj → 0 in S .

Now suppose u ∈ E ′(Rn). Then since S ⊂ E (Rn), we can certainly make sense of
u : S → C as a linear operator. Moreover, if {φj}∞j=1 ⊂ S is a sequence such that
φj → 0 in S , then we’ve just established that φj → 0 in E (Rn). As a consequence,
we have that u[φj ] → 0 by the continuity of u : E (Rn) → C. Thus u : S → C is
continuous, so we have shown that E ′(Rn) ⊂ S ′(Rn). This establishes the result.

Exercise 3.3. Let {aj}∞j=1 ⊂ R be a sequence of real numbers. Define for φ ∈ C∞(R):

u[φ] =
∞∑
j=1

ajφ(j)

provided that the sum converges. Give necessary and sufficient conditions on aj such
that:

a) u ∈ E ′(R).

Solution There must exist J such that aj = 0 for all j > J . This is because
suppu = {j ∈ N : aj 6= 0}. Thus u has compact support if and only if {aj} is
eventually zero.

b) u ∈ S ′.

Solution By Lemma 2.11, u ∈ S ′ if and only if there exist C, N such that:

|aj | ≤ CjN .

c) u ∈ D ′(R).

Solution u is always in D ′(Rn), since a compactly supported function will only ever
see finitely many of the terms in the sequence, so there is no issue of convergence at
infinity.

Exercise 3.4. For ξ ∈ Rn, define eξ(x) = eiξ·x. Show that Teξ ∈ S ′, and that:

Teξ → 0, as |ξ| → ∞

in the topology2 of S ′.

Solution Suppose φ ∈ S . We note that:

||φ||L1(Rn) =

∫
Rn
|φ(x)| dx =

∫
Rn

(1 + |x|)n+1 |φ(x)| × (1 + |x|)−n−1dx

≤ sup
x∈Rn

(1 + |x|)n+1 |φ(x)| ×
∫
Rn

(1 + |y|)−n−1dy

≤ C sup
x∈Rn

(1 + |x|)n+1 |φ(x)|

2This is defined precisely as the topology of D ′(Ω), mutatis mutandis.
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Thus necessarily φ ∈ L1, so since |eξ| = 1, we have eξ(x)φ(x) ∈ L1(Rn) and so the map:

Teξ [φ] =

∫
Rn
eiξ·xφ(x)dx

is well defined and linear. We also note that:∣∣Teξ [φ]
∣∣ ≤ ∫

Rn

∣∣∣eiξ·xφ(x)
∣∣∣ dx = ||φ||L1(Rn) ≤ C sup

x∈Rn
(1 + |x|)n+1 |φ(x)| ,

so Teξ is continuous by Lemma 2.11. Thus Teξ ∈ S ′.
Let φ ∈ S . Then:

Teξ [φ] =

∫
Rn
eiξ·xφ(x)dx = φ̂(−ξ).

By Lemma 3.1, we have that Teξ [φ] → 0 as ξ → 0. Since φ ∈ S was arbitrary, we
conclude that Teξ → 0 in S ′.

Exercise 3.5. Calculate the Fourier transform of the following functions f ∈ L1(R):

a) f(x) =
sinx

1 + x2
.

Solution We know that if:
g(x) =

1

1 + x2
,

then:

ĝ(ξ) =

{
πeξ ξ < 0,
πe−ξ ξ ≥ 0.

Note that:
f =

1

2i
(exg − e−xg)

so applying Lemma 3.2, we deduce:

f̂(ξ) =
1

2i

(
ê1g(ξ)− ê−1g(ξ)

)
=

1

2i
(ĝ(ξ − 1)− ĝ(ξ + 1))

So that:

ĝ(ξ) =


π
2i(e

ξ−1 − eξ+1) ξ < −1,
π
2i(e

ξ−1 − e−ξ−1) −1 ≤ ξ ≤ 1,
π
2i(e

−ξ+1 − e−ξ−1) ξ > 1,

which we can tidy up to give:

ĝ(ξ) =


iπeξ sinh 1 ξ < −1,

−iπe−1 sinh ξ −1 ≤ ξ ≤ 1,
−iπe−ξ sinh 1 ξ > 1,

b) f(x) =
1

ε2 + x2
, for ε > 0 a constant.
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Solution We know that if:
g(x) =

1

1 + x2
,

then:

ĝ(ξ) =

{
πeξ ξ < 0,
πe−ξ ξ ≥ 0.

Note that:
f(x) = ε−2g(ε−1x) = ε−1gε(x)

so applying Lemma 3.2, we deduce:

f̂(ξ) = ε−1ĝ(εx)

so that:

f̂(ξ) =

{
π
ε e
εξ ξ < 0,

π
ε e
−εξ ξ ≥ 0.

c) f(x) =

√
σ

t
e−σ

(x−y)2
t , where σ > 0, t > 0 and y are constants.

Solution We know that if g(x) = e−
1
2
x2 , then g(ξ) =

√
2πe−

1
2
ξ2 . We note that:

f =
1√
2
τy (gκ)

where κ =
√

t
2σ . Thus we find:

f̂ =
√
πe−

t
4σ
ξ2e−iyξ.

*d) f(x) =
1

coshx
.

Solution We need to evaluate the integral:

f̂(ξ) =

∫
R

e−ixξ

coshx
dx

Consider the contour Γ(R) = Γ
(R)
1 ∪ Γ

(R)
2 ∪ Γ

(R)
3 ∪ Γ

(R)
4 , where:

Γ
(R)
1 (t) = t, −R ≤ t ≤ R

Γ
(R)
2 (t) = R+ it, 0 ≤ t ≤ π

Γ
(R)
3 (t) = −t+ πi, −R ≤ t ≤ R

Γ
(R)
4 (t) = −R+ i(π − t) 0 ≤ t ≤ π

And let us look at:

I =

∮
Γ(R)

e−izξ

cosh z
dz =

∮
Γ(R)

g(z)dz
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From the expression:

cosh(x+ iy) = cos y coshx+ i sin y sinhx

we know that cosh(z) vanishes for z = 1
2(2n+ 1)πi, where n ∈ Z. Thus to evaluate I

using Cauchy’s formula, we have to consider the residue of g at z = iπ/2. We find (using
that if g(z) = h(z)/k(z) and k(z) has a simple zero at c then Res(g;x) = h(c)/k′(c)):

Res

(
g;
iπ

2

)
=

e
π
2
ξ

sinh iπ
2

= −ie
π
2
ξ

Thus,
I = 2πe

π
2
ξ.

Now let us consider the contributions from the various part of the contour. On Γ
(R)
2 (t)

we have the estimate:

|cosh(R+ it)|2 = cos2 t cosh2R+ sin2 t sinh2R

≥ cos2 t sinh2R+ sin2 t sinh2R = sinh2R

so that: ∣∣∣∣∣
∫

Γ
(R)
2

e−izξ

cosh z
dz

∣∣∣∣∣ =

∣∣∣∣∣
∫ π

0

e(−iR+tξ)

cosh(R+ i)t
dt

∣∣∣∣∣
≤
∫ π

0

∣∣∣∣∣ e(−iR+tξ)

cosh(R+ it)

∣∣∣∣∣ dt
≤ πeξπ

sinhR
→ 0

as R→∞. A similar estimate shows that:∣∣∣∣∣
∫

Γ
(R)
4

e−izξ

cosh z
dz

∣∣∣∣∣→ 0,

as R→∞. We also note that:∫
Γ
(R)
1

e−izξ

cosh z
dz =

∫ R

−R

e−itξ

cosh t
dt→ f̂(ξ)

as ξ →∞, while:∫
Γ
(R)
4

e−izξ

cosh z
dz = −

∫ R

−R

eitξ+πξ

cosh t
dt = eπξ

∫ R

−R

e−itξ

cosh t
dt→ eπξ f̂(ξ)

as R→ 0. Now, using that:

2πe
π
2
ξ = I =

∫
Γ
(R)
1

e−izξ

cosh z
dz +

∫
Γ
(R)
2

e−izξ

cosh z
dz +

∫
Γ
(R)
3

e−izξ

cosh z
dz +

∫
Γ
(R)
4

e−izξ

cosh z
dz.



8

we have, after sending R→∞:

2πe
π
2
ξ = (1 + eπξ)f̂(ξ),

so that
f̂(ξ) =

π

cosh
(
πξ
2

) .

Exercise 3.6. Suppose f ∈ C1(Rn) and that f,Djf ∈ L1(Rn). Fix ε > 0. Show that
there exists fε ∈ C1

0 (Rn) such that

||f − fε||L1(Rn) + ||Djf −Djfε||L1(Rn) <
ε

2
.

[Hint: First construct, for large R, a smooth cut-off function χR(x) with χR(x) = 1 for
|x| < R, χR(x) = 0 for |x| > 2R and |DχR(x)| < C, where C is independent of R.]

Solution Let χ ∈ C∞c (B2(0)) be a smooth function which satisfies 0 ≤ χ ≤ 1, with
χ(x) = 1 for x ∈ B1(0). Define:

χR(x) = χ
( x
R

)
.

We have χR(x) = 1 for |x| < R, χR(x) = 0 for |x| > 2R and

DχR(x) =
1

R
Dχ

( x
R

)
,

so that:

sup
x∈Rn

|DχR(x)| ≤ 1

R
sup
Dχ(x)

≤ C,

where C is independent of R. Now, since f,Djf ∈ L1(Rn), given δ > 0, there exists K
such that: ∫

Rn\BK(0)
|f(x)| dx ≤ δ,

∫
Rn\BK(0)

|Djf(x)| dx ≤ δ.

We take Rδ > 2K + 1, and we estimate:

||f − χRδf ||L1(Rn) =

∫
B2Rδ

(0)\BRδ (0)
|f(x)| (1− χRδ(x))dx

≤
∫
B2Rδ

(0)\BRδ (0)
|f(x)| dx ≤

∫
Rn\BK(0)

|f(x)| dx

< δ
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Similarly, we estimate:

||Djf −Dj(χRδf)||L1(Rn) =

∫
B2Rδ

(0)\BRδ (0)
|Djf(x)| (1− χRδ(x))dx

+

∫
B2Rδ

(0)\BRδ (0)
|f(x)| |DχRδ(x)| dx

≤ (1 + C)

∫
B2Rδ

(0)\BRδ (0)
|f(x)| dx

≤ (1 + C)

∫
Rn\BK(0)

|f(x)| dx

< (1 + C)δ

Taking δ sufficiently small that (2 + C)δ < ε/2 and setting fε = χRδf , we have shown:

||f − fε||L1(Rn) + ||Djf −Djfε||L1(Rn) <
ε

2
.

Exercise 3.7. Suppose f ∈ L1(Rn), with supp f ⊂ BR(0) for some R > 0.

a) Show that f̂ ∈ C∞(Rn) and for any multi-index:

sup
ξ∈Rn

∣∣∣Dαf̂(ξ)
∣∣∣ ≤ R|α| ||f ||L1(Rn)

Solution Recalling that Dαf̂(ξ) = (−i)|α|x̂αf(ξ), we can estimate:∣∣∣Dαf̂(ξ)
∣∣∣ =

∣∣∣x̂αf(ξ)
∣∣∣ =

∣∣∣∣∫
Rn
xαf(x)e−iξ·xdx

∣∣∣∣
=

∣∣∣∣∣
∫
BR(0)

xαf(x)e−iξ·xdx

∣∣∣∣∣
≤
∫
BR(0)

∣∣∣xαf(x)e−iξ·x
∣∣∣ dx

≤ R|α|
∫
BR(0)

|f(x)| dx = R|α| ||f ||L1(Rn) .

Here we have used the compactness of the support of f , and the fact that
∣∣xi∣∣ < R if

x ∈ BR(0). Taking the supremum over ξ, the result follows.

b) Show that f̂ is real analytic, with an infinite radius of convergence, i.e.:

f̂(ξ) =
∑
α

Dαf̂(0)
ξα

α!

holds for all ξ ∈ Rn.
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Solution We know that f̂ is smooth on Rn, so fixing some r > 0, we can apply
Taylor’s theorem to find that for any ξ ∈ Br(0) and any k ∈ N we have:

f̂(ξ) =
∑
|α|≤k

Dαf̂(0)
ξα

α!
+

∑
|β|=k+1

Rβ(ξ)xβ

where:
|Rβ(ξ)| ≤ 1

β!
max
|α|=|β|

max
η∈Br(0)

∣∣∣Dαf̂(η)
∣∣∣ .

In order to show that the Taylor series converges as k →∞, we need to show that∣∣∣∣∣∣
∑
|β|=k+1

Rβ(ξ)xβ

∣∣∣∣∣∣→ 0,

as k →∞. We estimate:∣∣∣∣∣∣
∑
|β|=k+1

Rβ(ξ)xβ

∣∣∣∣∣∣ ≤ # {β : |β| = k + 1} × sup
|β|=k+1

|Rβ(ξ)| × rk+1

Note that by part a), we already have that:

sup
|β|=k+1

|Rβ(ξ)| ≤ Rk+1 ||f ||L1(Rn) sup
|β|=k+1

1

β!
.

Recalling that β! = β1!β2! · · ·βn!, we can see that β! ≥ bk+1
n c!, so that:

sup
|β|=k+1

|Rβ(ξ)| ≤ Rk+1

bk+1
n c!

||f ||L1(Rn) ≤ R
k+1

(
bk+1

n c
e

)−b k+1
n
c

||f ||L1(Rn)

where we’ve used the result (Stirling’s approximation) that:

p! ≥
(p
e

)p
.

Now we need to estimate:
# {β : |β| = k + 1} .

This is the number of ways of partitioning k+1 into at most n integers, or equivalently
the number of ways of putting k + 1 identical objects into n boxes. We can crudely
overestimate this by assuming that all of the objects are distinguishable, in which case
there are nk+1 ways to assign the objects to their boxes. Thus we have:

# {β : |β| = k + 1} ≤ nk+1.

Finally then, we have:∣∣∣∣∣∣
∑
|β|=k+1

Rβ(ξ)xβ

∣∣∣∣∣∣ ≤ (nrR)k+1

(
bk+1

n c
e

)−b k+1
n
c

||f ||L1(Rn)



11

Now, suppose that k is sufficiently large that
(
b k+1
n
c

e

) 1
n

≥ (2nrR). Then:

(nrR)k+1

(
bk+1

n c
e

)−b k+1
n
c

≤

(bk+1
n c

Rrne

) 1
n

−(k+1)

≤ 2−k,

so that indeed we have: ∣∣∣∣∣∣
∑
|β|=k+1

Rβ(ξ)xβ

∣∣∣∣∣∣→ 0,

as k →∞. Thus the Taylor series converges for ξ ∈ Br(0. Since r was arbitrary, we
conclude that the Taylor series converges everywhere.

c) Show that if f̂(ξ) vanishes on an open set, it must vanish everywhere.
[Hint: use part i) of Lemma 3.2]

Solution First suppose that f̂(ξ) vanishes in a neighbourhood of the origin. Then
Dαf̂(0) = 0 for all α, and so by the previous part, we have that f̂ = 0. We conclude
that if a compactly supported function has a Fourier transform which vanishes in
the neighbourhood of the origin, then the function (and its transform) must vanish
everyhwhere.

Now, suppose that f̂(ξ) is the Fourier transform of a compactly supported function and
that f̂(ξ) vanishes in a neighbourhood of η. Then τ−ηf̂(ξ) vanishes in a neighbourhood
or the origin and moreover:

τ−ηf̂(ξ) = ê−ηf(ξ),

so that τ−ηf̂(ξ) is the transform of e−ηf , which has compact support because f does.
Thus τ−ηf̂(ξ) is the Fourier transform of a compactly supported function and τ−ηf̂(ξ)

vanishes in a neighbourhood of the origin. We deduce that τ−ηf̂(ξ) and hence f̂(ξ)
vanishes everywhere.

You may assume the following form of Taylor’s theorem. Suppose g ∈ Ck+1(Br(0)). Then
for x ∈ Br(0):

g(x) =
∑
|α|≤k

Dαg(0)
ξα

α!
+

∑
|β|=k+1

Rβ(x)xβ

where the remainder Rβ(x) satisfies the following estimate in Br(0):

|Rβ(x)| ≤ 1

β!
max
|α|=|β|

max
y∈Br(0)

|Dαg(y)| .

See §A.1 of the notes for notation.
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Exercise 4.1. Consider the following ODE problem. Given f : R→ C, find φ such that:

− φ′′ + φ = f. (2)

a) Show that if f ∈ S , there is a unique φ ∈ S solving (1), and give an expression for φ̂.

b) Show that

φ(x) =

∫
R
f(y)G(x− y)dy

where

G(x) =

{
1
2e
x x < 0,

1
2e
−x x ≥ 0.

Exercise 4.2. Suppose f ∈ L1(R3) is a radial function, i.e. f(Rx) = f(x), whenever
R ∈ SO(3) is a rotation.

a) Show that f̂ is radial.

b) Suppose that ξ = (0, 0, ζ). By writing the Fourier integral in polar coordinates, show
that

f̂(ξ) =

∫ ∞
r=0

∫ π

θ=0

∫ 2π

φ=0
f(r)e−iζr cos θr2 sin θdθdrdφ.

c) Making the substitution s = cos θ, and using the fact that f̂ is radial, deduce:

f̂(ξ) = 4π

∫ ∞
0

f(r)
sin r |ξ|
r |ξ|

r2dr

for any ξ ∈ Rn.

Exercise 4.3. (*) Suppose that f, g ∈ L2(Rn), and denote the Fourier-Plancherel trans-
form by F . You may assume any results already established for the Fourier transform.

a) Show that

(f, g) =
1

(2π)n
(
F [g],F [g]

)
.

b) Recall that f̌(y) = f(−y). Show that:

F
[
F [f ]

]
= (2π)nf̌ .

Hence, or otherwise, deduce that F : L2(Rn) → L2(Rn) is a bijection, and that
F−1

: L2(Rn)→ L2(Rn) is a bounded linear map.
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c) Show that:

F [f ](ξ) = lim
R→∞

∫
BR(0)

f(x)e−ix·ξdx

with convergence in the sense of L2(Rn).

d) Suppose that f ∈ C1(Rn) and f,Djf ∈ L2(Rn). Show that ξjF [f ](ξ) ∈ L2(Rn) and:

F [Djf ](ξ) = iξjF [f ](ξ)

e) For x ∈ R let:

f(x) =
sinx

x

i) Show that f ∈ L2(R).

ii) Show that:

F [f ](ξ) =

{
π −1 < ξ < 1,
0 |ξ| ≥ 1.

f) i) Show that for all x ∈ Rn:

|f ? g(x)| ≤ ||f ||L2(Rn) ||g||L2(Rn) .

ii) Show that f ? g ∈ C0(Rn) and:

f ? g = F−1
[
F [f ] · F [g]

]
where:

F−1[f̂ ](x) =
1

(2π)n

∫
Rn
f̂(ξ)eiξ·xdξ.

[Hint for parts a), b), d), f): approximate by Schwartz functions]

Exercise 4.4. Work in R3. For k > 0, define the function:

G(x) =
e−k|x|

4π |x|

a) Show that G ∈ L1(R3).

b) Show that:

Ĝ(ξ) =
1

|ξ|2 + k2

[Hint: use Exercise 4.2, part c)]
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Exercise 4.5. Consider the inhomogeneous Helmholtz equation on R3:

−∆φ+ k2φ = f (3)

where f ∈ S . Show that there exists a unique φ ∈ S satisfying (2) given by:

φ(x) =

∫
R3

f(y)G(x− y)dy,

where

G(x) =
e−k|x|

4π |x|
.

[Hint: first derive an equation satisfied by φ̂]

Exercise 4.6. Verify that if f ∈ L1
loc. is such that Tf ∈ S ′, then:

τxTf = Tτxf , and Ťf = Tf̌

Exercise 4.7. Let f : R→ R be the sign function

f(x) =

{
−1 x < 0
1 x ≥ 0

and define fR(x) = f(x)1[−R,R](x).

a) Sketch fR(x).

b) Show that:
TfR → Tf in S ′ as R→∞.

c) Show that:

f̂R(ξ) = 2i
cosRξ − 1

ξ

d) For φ ∈ S , show that:

Tf̂R [φ] = −2i

∫ ∞
0

φ(x)− φ(−x)

x
dx+ 2i

∫ ∞
0

(
φ(x)− φ(−x)

x

)
cosRxdx

e) By applying the Riemann-Lebesgue Lemma, or otherwise, show that for any ψ ∈ S :∫ ∞
0

ψ(x) cosRxdx→ 0

as R→∞.

f) Deduce that

T̂f = −2iP.V.

(
1

x

)
g) Write down T̂H , where H is the Heaviside function:

H(x) =

{
0 x < 0
1 x ≥ 0



Example Sheet 5 M*P18: Fourier Analysis and Theory of Distributions

Exercise 5.1. Suppose v ∈ E ′(Rn) and let:

u =
∑
g∈Zn

τgv.

Show that if φ ∈ D(Rn) with suppφ ⊂ K for some compact K ⊂ Rn then

u[φ] =
∑
g∈A

τgv[φ],

for some finite set A ⊂ Zn which depends only on K. Deduce that u defines a distribution.

Solution Suppose φ ∈ D(Rn) with supp v ⊂ K, with K some fixed, compact K. Pick R
large enough that supp v ⊂ BR(0) and K ⊂ BR(0). Suppose now that |g| > 2R and that
x ∈ K − g, so that x = y − g for some y ∈ K ⊂ BR(0). From the triangle inequality we
have:

|x| ≥ |g| − |y| > R

so that (K − g) ∩BR(0) = ∅. Now consider τgv[φ] = v[τ−gφ]. We have that supp τ−gφ =
(suppφ − g) ⊂ (K − g) and supp v ⊂ BR(0), so that supp τ−gφ ∩ supp v = ∅. Thus
τgv[φ] = 0. Thus:

u[φ] =
∑
g∈Zn

τgv[φ] =
∑

g∈Zn∩B2R(0)

τgv[φ].

so that the sum is in fact finite.
Now consider a sequence {φj}∞j=1 ⊂ D(Rn) with φj → 0 in D(Rn). We have that

suppφj ⊂ K for some fixed compact set. Applying the previous result, there exists R > 0
depending on K such that:

u[φj ] =
∑

g∈Zn∩B2R(0)

τgv[φj ]

This is a finite sum, and since v ∈ E ′(Rn), we have that each term τgv[φj ]→ 0 as j →∞,
so that:

u[φj ]→ 0,

and u ∈ D ′(Rn).

Exercise 5.2. Recall that for x ∈ Rn:

||x||1 :=
n∑
i=1

|xi| .

For k ∈ N set:

Qk =

{
g ∈ Zn : k − 1

2
≤ ||g||1 < k +

1

2

}
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a) Show that:
#Qk = (2k + 1)n − (2k − 1)n

so that #Qk ≤ c(1 + k)n−1 for some c > 0.

Solution Let Ck be the lattice cube:{
g ∈ Zn : ||g||1 < k +

1

2

}
This has 2k+1 lattice points on each side, so #Ck = (2k+1)n. Clearly Qk = Ck \Ck−1

and the result follows. To see the bound for #Qk, notice that it is a polynomial of
degree n−1 whose coefficients depend only on n, so it must be bounded by c(1+k)n−1

for some c sufficiently large.

b) By applying the Cauchy-Schwartz identity to estimate a · b for a = (1, . . . , 1) and
b = (|g1| , . . . , |gn|), deduce that:

||g||1 ≤
√
n |g|

Solution The Cauchy–Schwartz inequality tells us that:

a · b ≤ |a| |b|

Applying this with a, b as suggested, we have:

a · b =
n∑
i=1

aibi =
n∑
i=1

|gi| = ||g||1 .

On the other hand:

|a|2 =

n∑
i=1

|ai|2 =

n∑
i=1

1 = n

and

|b|2 =

n∑
i=1

|bi|2 =

n∑
i=1

|gi|2 = |g|2 ,

and the result follows.

c) Show that there exists a constant C > 0, depending only on n such that:

∑
g∈Zn;||g||1≤K

1

(1 + |g|)n+1
≤ 1 + C

K∑
k=1

1

k2

holds for all K ∈ N. Deduce that:∑
g∈Zn

1

(1 + |g|)n+1
<∞.
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Solution We note that:

1

(1 + |g|)n+1
≤ 1

(1 + n−
1
2 ||g||1)n+1

≤ n
n+1
2

(n
1
2 + ||g||1)n+1

≤ n
n+1
2

(1 + ||g||1)n+1
.

We can split up the sum as:

∑
g∈Zn;||g||1≤K

1

(1 + |g|)n+1
= 1 +

K∑
k=1

∑
g∈Qk

1

(1 + |g|)n+1

and we estimate the second term by:

K∑
k=1

∑
g∈Qk

1

(1 + |g|)n+1
≤ n

n+1
2

K∑
k=1

∑
g∈Qk

1

(1 + ||g||1)n+1

= n
n+1
2

K∑
k=1

#Qk
(1 + k)n+1

≤ n
n+1
2 c

K∑
k=1

1

(1 + k)2
≤ C

K∑
k=1

1

k2

Now, this sum converges to a finite value as K →∞, so we have that∑
g∈Zn;||g||1≤K

1

(1 + |g|)n+1

is increasing and bounded above, hence converges to a finite value.

Exercise 5.3. Show that if cg satisfy:

|cg| ≤ K(1 + |g|)N

for some K > 0 and N ∈ N, then: ∑
g∈Zn

cgδ2πg

converges in S ′.

Solution Fix any M ≥ 0. First recall that if φ ∈ S , then:

sup
x∈Rn

(1 + |x|)M |ψ(x)| <∞

We deduce that:
|ψ(2πg)| ≤ C

(1 + |g|)M

holds for some C depending on ψ,M . Letting M = N + n+ 1, we have:∑
g∈Zn,|g|<k

|cgδ2πg[φ]| ≤
∑

g∈Zn,|g|<k

|cg| |φ(2πg)| ≤ CK
∑

g∈Zn,|g|<k

1

(1 + |g|)n+1
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The sum on the right converges as k →∞, so we conclude that:∑
g∈Zn

cgδ2πg[φ]

converges absolutely for any φ ∈ S . This is precisely the statement that∑
g∈Zn

cgδ2πg

converges in S ′.

Exercise 5.4. Suppose f ∈ Lploc.(R
n) is a periodic function. Fix ε > 0, and let:

Q = {x ∈ Rn : |xj | < 1, j = 1, . . . , n}, q =

{
x ∈ Rn : |xj | <

1

2
, j = 1, . . . , n

}
a) Show that there exists hε ∈ C∞(Rn) with:

supphε ⊂ Q

such that:
||f1q − hε||Lp(Rn) < ε.

Solution We have that f1q ∈ Lp(Rn). Applying Theorem 1.13, we can construct
hε ∈ C∞ such that hε → f1q in Lp(Rn), and with supphε ⊂ supp f1q +Bε(0) ⊂ Q.

Define
fε =

∑
g∈Zn

τghε

b) Show that fε is smooth and periodic.

Solution Since hε has support inside Q, the sum is locally finite. That is to say that
if U is any bounded open set,

fε|U =
∑
g∈Zn

τghε =
∑

g∈Zn∩E
τghε

for some bounded set E, so that fε is certainly smooth in U since it is a finite sum of
smooth functions. To see that fε is periodic, we note that if g′ ∈ Zn, then:

τg′fε =
∑
g∈Zn

τg′τghε =
∑
g∈Zn

τg+g′hε =
∑
g′′∈Zn

τg′′hε = fε

c) Show that there exists a constant cn depending only on n such that:

||f − fε||Lp(q) < cnε.
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Solution Noting that:

||f1q − hε||Lp(Rn) = ||f − hε||Lp(q) + ||hε||Lp(Q\q)

we deduce that:
||f − hε||Lp(q) + ||hε||Lp(Q\q) < ε.

Now note that:
(f − fε)|q = f − hε −

∑
|g|≤n

τghε

since if g ∈ Zn with |g| > n and x ∈ q, then x− g 6∈ Q. We deduce:

||f − fε||Lp(q) ≤ ε+
∑
|g|=1

ε = cnε.

Exercise 5.5. Suppose that f : R→ R is given by:

f(x) = x for |x| < 1

2
, f(x+ 1) = f(x).

Show that:

f(x) =
∑

n∈Z,n6=0

i(−1)n

2πn
e2πinx =

∞∑
n=1

(−1)n+1

nπ
sin(2πnx),

with convergence in L2
loc.(R).

Solution By Theorem 3.17 and Corollary 3.18 we know that for f ∈ L2
loc.(R) a periodic

function, we have that:

f(x) =

∞∑
n=−∞

fne
2πinx

where the sum converges in L2
loc. and the Fourier coefficients are given by:

fn =

∫ 1
2

− 1
2

e−2πinxf(x)dx.

We calculate for n 6= 0.

fn =

∫ 1
2

− 1
2

e−2πinxf(x)dx =

∫ 1
2

− 1
2

xe−2πinxdx

=

[
x
e−2πinx

−2πni

] 1
2

− 1
2

−
∫ 1

2

− 1
2

e−2πinx

−2πni
dx

=
i

2πn
e−iπn =

i(−1)n

2πn

For n = 0, we have

f0 =

∫ 1
2

− 1
2

f(x)dx =

∫ 1
2

− 1
2

xdx = 0.
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Thus we have:
f(x) =

∑
n∈Z,n 6=0

i(−1)n

2πn
e2πinx

For the second equality, we rewrite the sum as:

∑
n∈Z,n 6=0

i(−1)n

2πn
e2πinx =

∞∑
n=1

i(−1)n

2πn
e2πinx +

1∑
n=−∞

i(−1)n

2πn
e2πinx

=

∞∑
n=1

i(−1)n

2πn
e2πinx +

∞∑
n=1

i(−1)−n

2π(−n)
e2πi(−n)x

=
∞∑
n=1

i(−1)n

2πn

[
e2πinx − e−2πinx

]
=
∞∑
n=1

(−1)n+1

nπ
sin(2πnx)

Exercise 5.6. Suppose f : R→ R is given by:

f(x) =

{
−1 −1

2 < x ≤ 0
1 0 < x ≤ 1

2

, f(x+ 1) = f(x).

a) Show that:

f(x) =
1

πi

∞∑
n=−∞

2

2n+ 1
e2πi(2n+1)x =

4

π

∞∑
n=0

1

2n+ 1
sin [2π(2n+ 1)x]

With convergence in L2
loc.(Rn).

Solution By Theorem 3.17 and Corollary 3.18 we know that for f ∈ L2
loc.(R) a periodic

function, we have that:

f(x) =

∞∑
n=−∞

fne
2πinx

where the sum converges in L2
loc. and the Fourier coefficients are given by:

fn =

∫ 1
2

− 1
2

e−2πinxf(x)dx.

We calculate for n 6= 0:

fn = −
∫ 0

− 1
2

e−2πinxdx+

∫ 1
2

0
e−2πinxdx

=

[
e−2πinx

2πni

]0

− 1
2

−
[
e−2πinx

2πni

] 1
2

0

=
1

πni
(1− (−1)n)

=

{
2
πni n odd
0 n even
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For n = 0, we have:

f0 = −
∫ 0

− 1
2

dx+

∫ 1
2

0
dx = 0.

Thus:

f(x) =
∑
n odd

2

πni
e2πinx =

1

πi

∞∑
n=−∞

2

2n+ 1
e2πi(2n+1)x

We can re-write this sum as:

1

πi

∞∑
n=−∞

2

2n+ 1
e2πi(2n+1)x =

1

πi

−1∑
n=−∞

2

2n+ 1
e2πi(2n+1)x +

1

πi

∞∑
n=0

2

2n+ 1
e2πi(2n+1)x

=
1

πi

∞∑
n=0

− 2

2n+ 1
e−2πi(2n+1)x +

1

πi

∞∑
n=0

2

2n+ 1
e2πi(2n+1)x

=
1

πi

∞∑
n=0

2

2n+ 1

[
e2πi(2n+1)x − e−2πi(2n+1)x

]
=

4

π

∞∑
n=0

1

2n+ 1
sin [2π(2n+ 1)x]

Define the partial sum:

SN (x) = 8
N−1∑
n=0

1

2π(2n+ 1)
sin [2π(2n+ 1)x] .

b) Show that:

SN (x) = 8

∫ x

0

N−1∑
n=0

cos [2π(2n+ 1)t] dt.

Solution Noting that:

1

2π(2n+ 1)
sin [2π(2n+ 1)x] =

∫ x

0
cos [2π(2n+ 1)t] dt,

we have:

SN (x) = 8

N−1∑
n=0

∫ x

0
cos [2π(2n+ 1)t] dt

= 8

∫ x

0

N−1∑
n=0

cos [2π(2n+ 1)t] dt.

where we can commute the sum and the integral since the sum is finite.
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c) Show that:

cos [2π(2n+ 1)t] sin 2πt =
1

2
(sin [2π(2n+ 2)t]− sin [4πnt])

And deduce:

SN (x) = 8

∫ x

0

sin 4πNt

2 sin 2πt
dt.

Solution We have the trig identity:

cos a sin b =
1

2
[sin(a+ b)− sin(a− b)] .

Setting a = 2π(2n+ 1)t, b = 2πt gives the result. Summing from n = 0 to N − 1, we
have a telescoping sum, and we find:

N−1∑
n=0

cos [2π(2n+ 1)t] sin 2πt =
1

2
sin [4πNt]

Dividing by sin 2πt and integrating in t from 0 to x we find:

SN (x) = 8

∫ x

0

N−1∑
n=0

cos [2π(2n+ 1)t] dt = 8

∫ x

0

sin 4πNt

2 sin 2πt
dt.

d) Show that the first local maximum of SN occurs at x = 1
4N , and:

SN

(
1

4N

)
≥ 8

∫ 1
4N

0

sin 4πNt

4πt
dt =

2

π

∫ π

0

sin s

s
ds ' 1.179 . . .

Solution We have that:

S′N (x) = 8
sin 4πNx

2 sin 2πx
,

which vanishes for 4Nx ∈ Z, with x 6= 0. Thus the first local extremum is at x = 1
4N .

This is a maximum, since S′N (x) ≥ 0 for x ≤ 1
4N and S′N (x) ≤ 0 for 1

4N ≤ x ≤ 1
2N .

Noticing that for x ≥ 0 we have sinx ≤ x, we find:

SN

(
1

4N

)
= 8

∫ 1
4N

0

sin 4πNt

2 sin 2πt
dt ≥ 8

∫ 1
4N

0

sin 4πNt

4πt
dt

Changing variables to s = 4πNt, the second part of the result follows.

e) Conclude that the sum in part a) does not converge uniformly.
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Solution For N ≥ 1, we have that 0 < 1
4N < 1

2 , so f
(

1
4N

)
= 1. Thus for all N we

have: ∣∣∣∣SN ( 1

4N

)
− f

(
1

4N

)∣∣∣∣ ≥ 2

π

∫ π

0

sin s

s
ds− 1 > 0.

Thus:
sup

x∈(0, 1
2

)

|SN (x)− f (x)| 6→ 0

as N →∞.

This lack of uniform convergence of a Fourier series at a point of discontinuity is known
as Gibbs Phenomenon.

Exercise 5.7. (*) Suppose that λ = {λ1, . . . λn} is a basis for Rn. We define the lattice
generated by λ to be:

Λ =


n∑
j=1

zjλj : zj ∈ Z

 .

Define the fundamental cell:

qΛ =


n∑
j=1

xjλj : |xj | <
1

2

 .

We say that u ∈ D ′(Rn) is Λ−periodic if:

τgu = u for all g ∈ Λ.

a) Show that there exists ψ ∈ C∞0 (2qΛ) such that ψ ≥ 0 and∑
g∈Λ

τgψ = 1.

b) Show that if u ∈ D ′(Rn) is Λ−periodic and ψ, ψ′ are both as in part a), then

1

|qΛ|
u[ψ] =

1

|qΛ|
u[ψ′] =: M(u)

c) Define the dual lattice by:

Λ∗ := {x ∈ Rn : g · x ∈ 2πZ, ∀g ∈ Λ}

Show that there exists a basis λ∗ = {λ∗1, . . . λ∗n} such that λ∗j · λk = δjk, and Λ∗ is the
lattice induced by λ∗.

d) Show that if g ∈ Λ∗ then eg is Λ−periodic.
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e) Show that if u ∈ D ′(Rn) is Λ−periodic, then:

û =
∑
g∈Λ∗

cgδg

for some cg ∈ C satisfying |cg| ≤ K(1 + |g|)N for some K > 0, N ∈ Z.

f) Show that if u ∈ D ′(Rn) is Λ−periodic, then:

u =
∑
g∈Λ∗

dgTeg

where |dg| ≤ K(1 + |g|)N for some K > 0, N ∈ Z are given by:

dg = M(e−gu)

Exercise 5.8. Suppose s ≥ 0.

a) Show that S ⊂ Hs(Rn).

Solution Suppose φ ∈ S , then φ̂ ∈ S as the Fourier transform maps the Schwartz
space to itself. Since φ̂ ∈ S , we know that for any M ≥ 0 we have:

sup
x∈Rn

(1 + |ξ|)M
∣∣∣φ̂(ξ)

∣∣∣ <∞
Taking M = s+ n+1

2 , we have that:∣∣∣φ̂(ξ)
∣∣∣2 ≤ C

(1 + |ξ|)2s+n+1

Now, we can estimate:

||φ||2Hs(Rn) =

∫
Rn

(1 + |ξ|)2s
∣∣∣f̂(ξ)

∣∣∣2 dξ
≤
∫
Rn

(1 + |ξ|)2s C

(1 + |ξ|)2s+n+1
dξ = C

∫
Rn

1

(1 + |ξ|)n+1
dξ <∞.

b) Suppose f ∈ Hs(Rn). Show that given ε > 0 there exists fε ∈ S with:

||f − fε||Hs(Rn) < ε.

Hint: First find gε ∈ S such that∣∣∣∣∣∣(f̂ − gε)(1 + |ξ|)s
∣∣∣∣∣∣
L2(Rn)

< ε.
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Solution Since f ∈ Hs(Rn), we have that f̂(1 + |ξ|)s ∈ L2(Rn). Thus, given ε > 0,
there exists R > 0 such that:∣∣∣∣∣∣f̂(1 + |ξ|)s

∣∣∣∣∣∣
L2(Rn\BR(0))

<
ε

2

By Theorem 1.13 b), we can find hε ∈ C∞0 (Rn) such that:∣∣∣∣∣∣f̂(1 + |ξ|)s1BR(0) − hε
∣∣∣∣∣∣
L2(Rn)

<
ε

2

Defining gε = hε(1 + |ξ|)−s ∈ C∞0 (Rn), we have:∣∣∣∣∣∣(f̂ − gε)(1 + |ξ|)s
∣∣∣∣∣∣
L2(Rn)

=
∣∣∣∣∣∣f̂(1 + |ξ|)s(1− 1BR(0)) + f̂(1 + |ξ|)s1BR(0) − hε

∣∣∣∣∣∣
L2(Rn)

≤
∣∣∣∣∣∣f̂(1 + |ξ|)s

∣∣∣∣∣∣
L2(Rn\BR(0))

+
∣∣∣∣∣∣f̂(1 + |ξ|)s1BR(0) − hδ

∣∣∣∣∣∣
L2(Rn)

< ε.

Now, clearly gε ∈ C∞0 (Rn) ⊂ S , so there exists fε ∈ S with f̂ε = gε. This satisfies:

||f − fε||Hs(Rn) =
∣∣∣∣∣∣(f̂ − gε)(1 + |ξ|)s

∣∣∣∣∣∣
L2(Rn)

< ε,

and we’re done.

c) Show that
||f ||Hs(Rn) ≤ ||f ||Ht(Rn)

for t ≥ s. Deduce that:

||f ||L2(Rn) ≤
1

(2π)n
||f ||Hs(Rn)

Hint: Use Parseval’s formula

Solution Clearly if s ≤ t, then:

(1 + |ξ|)2s ≤ (1 + |ξ|)2t,

so we have: ∫
Rn

(1 + |ξ|)2s
∣∣∣f̂(ξ)

∣∣∣2 dξ ≤ ∫
Rn

(1 + |ξ|)2t
∣∣∣f̂(ξ)

∣∣∣2 dξ
whence it is immediate that:

||f ||Hs(Rn) ≤ ||f ||Ht(Rn) .

Setting s = 0, we have that for t ≥ 0:

||f ||2L2(Rn) =
1

(2π)n

∫
Rn

∣∣∣f̂(ξ)
∣∣∣2 dξ ≤ ∫

Rn
(1 + |ξ|)2t

∣∣∣f̂(ξ)
∣∣∣2 dξ

which gives the result.
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d) Show that the derivative Dα is a bounded linear map from Hs+k(Rn) into Hs(Rn),
where k = |α|.

Solution First note that there exists a constant cα such that:

|ξα| ≤ cα(1 + |ξ|)|α|

Making use of the fact that:

D̂αf(ξ) = i|α|ξαf̂(ξ),

we have

||Dαf ||2Hs(Rn) =

∫
Rn

(1 + |ξ|)2s
∣∣∣D̂αf(ξ)

∣∣∣2 dξ
=

∫
Rn

(1 + |ξ|)2s |ξα|2
∣∣∣f̂(ξ)

∣∣∣2 dξ
≤ cα

∫
Rn

(1 + |ξ|)2s+2k
∣∣∣f̂(ξ)

∣∣∣2 dξ = ||f ||2Hs+k(Rn) .

so that:
||Dαf ||Hs(Rn) ≤ cα ||f ||Hs+k(Rn)

and hence the operator Dα : Hs+k(Rn)→ Hs(Rn) is bounded.

Exercise 5.9. Suppose that u0 ∈ L1(Rn)∩L2(Rn) and that u(t, x) is the solution of the
heat equation with initial data u0. Explicitly, u is given by:

u(t, x) =
1

(2π)n

∫
Rn
û0(ξ)e−t|ξ|

2

eiξ·xdξ,

for t > 0.

a) Show that:
||u(t, ·)||L2(Rn) ≤ ||u0||L2(Rn) ,

Solution By Parseval’s formula, we have that:

||u(t, ·)||L2(Rn) =
1

(2π)n
||û(t, ·)||L2(Rn) =

1

(2π)n

∣∣∣∣∣∣û0e
−t|ξ|2

∣∣∣∣∣∣
L2(Rn)

However, for t ≥ 0, we have
∣∣∣e−t|ξ|2∣∣∣ ≤ 1, so we can estimate:

1

(2π)n

∣∣∣∣∣∣û0e
−t|ξ|2

∣∣∣∣∣∣
L2(Rn)

≤ 1

(2π)n
||û0||L2(Rn) = ||u0||L2(Rn)

where in the last line we applied Parseval again. This gives the result.
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b) Show that:
u(t, x) = u0 ? Kt(x)

where the heat kernel is given by:

Kt(x) =
1

(4πt)
n
2

e−
|x|2
4t .

Solution First, we recall from Example 12 iv) that if f(x) = e−
1
2
|x|2 , then f̂(ξ) =

(2π)
n
2 e−

1
2
|ξ|2 . We also know from Lemma 3.2 i) that if fλ(x) = λ−nf(λ−1x), then

f̂λ(ξ) = f̂(λξ). Note that:

Kt(x) =
1

(2π)
n
2

(
1√
2t

)n
e
− 1

2

∣∣∣ x√
2t

∣∣∣2

Combining these facts, we deduce that:

K̂t(ξ) = e−t|ξ|
2

.

Thus, we have that:
û(t, ξ) = û0(ξ)K̂t(ξ).

By Lemma 3.2 ii), we have that:

u(t, x) = u0 ? Kt(x) =
1

(4πt)
n
2

∫
Rn
u0(y)e−

|x−y|2
4t dy

c) Suppose that u0 ≥ 0. Show that u ≥ 0, and:

||u(t, ·)||L1(Rn) = ||u0||L1(Rn) .

[Hint: Lemma 1.9 may be useful]

Solution By Lemma 1.9, we know that if f, g ∈ S :∫
Rn
f ? g(x)dx =

∫
Rn
f(x)dx

∫
Rn
g(x)dx.

Suppose u0 ∈ S . Since u0 ≥ 0, and Kt ≥ 0 we have u0 ? Kt ≥ 0, so that:

||u(t, ·)||L1(Rn) = ||u0 ? Kt||L1(Rn) =

∫
Rn
u0 ? Kt(x)dx.

Now, applying the result above we have that:

||u(t, ·)||L1(Rn) =

∫
Rn
u0(x)dx

∫
Rn
Kt(x)dx = ||u0||L1(Rn)

where we have used that: ∫
Rn
Kt(x)dx = K̂t(0) = 1.

Now, since S is dense in L2(Rn) ∩ L1(Rn), we can extend this result to the full space
by continuity.
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Exercise 5.10. Consider the Schrödinger equation:{
ut = i∆u in (0, T )× Rn,
u = u0 on {0} × Rn (4)

Suppose u0 ∈ H2(Rn).

a) Show that (3) admits a unique solution u such that

u ∈ C0([0, T );H2(Rn)) ∩ C1((0, T );L2(Rn)),

whose spatial Fourier-Plancherel transform is given by:

û(t, ξ) = û0(ξ)e−it|ξ|
2

.

Solution Assuming we have such a solution, and Fourier transforming in the spatial
variable (which we’re entitled to do, under the assumptions on u) the equation becomes:{

ût = −i |ξ|2 û in (0, T )× Rn,
û = û0 on {0} × Rn

This can be readily solved to give:

û(t, ξ) = û0(ξ)e−it|ξ|
2

. (5)

Now suppose u0 ∈ H2(Rn). The u defined by (??) belongs to the space C0([0, T );H2(Rn))∩
C1((0, T );L2(Rn)) and we can undo the steps above to deduce that u solves (3).

Bonus material: We’ll verify that u ∈ C0([0, T );H2(Rn))∩C1((0, T );L2(Rn)). This
is included for interest, but would be overkill in an exam. First, we note that:

||u(t, ·)||2H2(Rn) =

∫
Rn
|û(t, ξ)|2 (1 + |ξ|)4dξ =

∫
Rn
|û0(ξ)|2 (1 + |ξ|)4dξ = ||u0||2H2(Rn)

so that u(t, ·) ∈ H2(Rn). We can verify that in fact the map u : [0, T )→ H2(Rn) is
continuous. We calculate, for t, t′ ∈ [0, T ):∣∣∣∣u(t, ·)− u(t′, ·)

∣∣∣∣2
H2(Rn)

=

∫
Rn

∣∣∣e−it|ξ|2 − e−it′|ξ|2∣∣∣2 |û0(ξ)|2 (1 + |ξ|)4dξ

Clearly:

lim
t′→t

∣∣∣e−it|ξ|2 − e−it′|ξ|2∣∣∣2 |û0(ξ)|2 (1 + |ξ|)4 = 0

and moreover∣∣∣e−it|ξ|2 − e−it′|ξ|2∣∣∣2 |û0(ξ)|2 (1 + |ξ|)4 ≤ 2 |û0(ξ)|2 (1 + |ξ|)4

which is integrable, since u0 ∈ H2(Rn). Thus we conclude that:

lim
t′→t

∣∣∣∣u(t, ·)− u(t′, ·)
∣∣∣∣
H2(Rn)

= 0.
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Next we verify that the map u : (0, T ) → L2(Rn) is differentiable. Let w(t, x) be
defined in terms of its spatial Fourier transform by:

ŵ(t, ξ) = −i |ξ|2 û0(ξ)e−it|ξ|
2

.

First we claim that w(t, ·) ∈ L2(Rn). By Parseval’s formula, we have:

||w(t, ·)||2L2(Rn) =
1

(2π)n
||ŵ(t, ·)||2L2(Rn) =

1

(2π)n

∫
Rn
|û0(ξ)|2 |ξ|4 dξ

which is finite since u0 ∈ H2(Rn). Next we claim w : (0, T ) → L2(Rn) given by
t 7→ w(t, ·) is in fact continuous. To see this we calculate, again with Parseval:∣∣∣∣w(t, ·)− w(t′, ·)

∣∣∣∣2
L2(Rn)

=
1

(2π)n

∫
Rn

∣∣∣e−it|ξ|2 − e−it′|ξ|2∣∣∣2 |û0(ξ)|2 |ξ|4 dξ

Invoking the Dominated convergence theorem precisely as above shows that:

lim
t′→t

∣∣∣∣w(t, ·)− w(t′, ·)
∣∣∣∣
L2(Rn)

→ 0.

Finally, for t, t′ ∈ (0, T ) we wish to show that:

lim
t′→t

u(t, ·)− u(t′, ·)
t− t′

→ w(t, ·).

as t′ → t. We calculate:

û(t, ·)− û(t′, ·)
t− t′

+ i |ξ|2 û0(ξ)e−it|ξ|
2

= û0(ξ)

(
e−it|ξ|

2

− e−it′|ξ|
2

t− t′
+ i |ξ|2 e−it|ξ|

2

)

= û0(ξ) |ξ|2
(
e−it|ξ|

2

− e−it′|ξ|
2

t |ξ|2 − t′ |ξ|2
+ ie−it|ξ|

2

)

Note that:

e−it|ξ|
2

− e−it′|ξ|
2

= −i
∫ t|ξ|2

t′|ξ|2
e−isds

so that ∣∣∣e−it|ξ|2 − e−it′|ξ|2∣∣∣ ≤ ∣∣∣t |ξ|2 − t′ |ξ|2∣∣∣ .
We conclude that: ∣∣∣∣∣

(
e−it|ξ|

2

− e−it′|ξ|
2

t |ξ|2 − t′ |ξ|2
+ ie−it|ξ|

2

)∣∣∣∣∣ ≤ 2

and moreover (
e−it|ξ|

2

− e−it′|ξ|
2

t |ξ|2 − t′ |ξ|2
+ ie−it|ξ|

2

)
→ 0

as t′ → t.
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In conclusion, we can deduce that:∣∣∣∣ û(t, ·)− û(t′, ·)
t− t′

+ i |ξ|2 û0(ξ)e−it|ξ|
2

∣∣∣∣2 → 0

as t′ → t and moreover:∣∣∣∣ û(t, ·)− û(t′, ·)
t− t′

+ i |ξ|2 û0(ξ)e−it|ξ|
2

∣∣∣∣2 ≤ |û0|2 |ξ|4

where the right hand side is integrable since u0 ∈ H2(Rn). Thus we can invoke the
Dominated Convergence Theorem to decuce:∣∣∣∣∣∣∣∣u(t, ·)− u(t′, ·)

t− t′
− w(t, ·)

∣∣∣∣∣∣∣∣
L2(Rn)

=
1

(2π)n

∣∣∣∣∣∣∣∣ û(t, ·)− û(t′, ·)
t− t′

− ŵ(t, ·)
∣∣∣∣∣∣∣∣
L2(Rn)

→ 0

as t′ → t.

b) Show that:
||u(t, ·)||H2(Rn) = ||u0||H2(Rn)

Solution This is a simple calculation with the norm:

||u(t, ·)||2H2(Rn) =

∫
Rn
|û(t, ξ)|2 (1 + |ξ|)4dξ =

∫
Rn
|û0(ξ)|2 (1 + |ξ|)4dξ = ||u0||2H2(Rn)

*c) For t > 0, let Kt ∈ L1
loc.(Rn) be given by:

Kt(x) =
1

(4πit)
n
2

e
i|x|2
4t ,

where for n odd we take the usual branch cut so that i
1
2 = ei

π
4 . For ε > 0 set

Kε
t (x) = e−ε|x|

2

Kt(x).

i) Show that TKε
t
→ TKt in S ′ as ε→ 0.

ii) Show that if <(σ) > 0, then:∫
R
e−σx

2−ixξdx =

√
π

σ
e−

ξ2

4σ .

iii) Deduce that

K̂ε
t (ξ) =

(
1

1 + 4itε

)n
2

e
−it|ξ|2
1+4itε

iv) Conclude that:
T̂Kt = TK̃t ,

where K̃t = e−it|ξ|
2

.
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*d) Suppose that u ∈ S (Rn). Show that for t > 0:

u(t, x) =

∫
Rn
u0(y)Kt(x− y)dy,

and deduce:
sup

t>0,x∈Rn
|u(t, x)| ≤ 1

(4πt)
n
2

||û0||L1(Rn) .

This type of estimate which shows us that (locally) solutions to the Schrödinger
equation decay in time is known as a dispersive estimate.

Exercise 5.11. Let R3
∗ := R3 \ {0}, S∗,T := (−T, T )×R3

∗ and |x| = r. You may assume
the result that if u = u(r, t) is radial, we have

∆u(|x| , t) = ∆u(r, t) =
∂2u

∂r2
(r, t) +

2

r

∂u

∂r
(r, t)

a) Suppose u(x, t) = 1
rv(r, t) for some function v. Show that u solves the wave equation

on R3
∗ × (0, T ) if and only if v satisfies the one-dimensional wave equation

−∂
2v

∂t2
+
∂2v

∂r2
= 0

on (0,∞)× (−T, T ).

Solution Assuming u has the form given, we calculate

∂u

∂r
=

1

r

∂v

∂r
− 1

r2
v

and

∂2u

∂r2
=

1

r

∂2v

∂r2
− 2

1

r2

∂v

∂r
+

2

r3
v

so that

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
=

1

r

∂2v

∂r2
.

We also have that
∂2u

∂t2
=

1

r

∂2v

∂t2

so that

−∂
2u

∂t2
+ ∆u =

1

r

(
−∂

2v

∂t2
+
∂2v

∂r2

)
so clearly, u obeys the three dimensional wave equation away from r = 0 if and only if
v obeys the one-dimensional wave equation.
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b) Suppose f, g ∈ C2
c (R). Deduce that

u(x, t) =
f(r + t)

r
+
g(r − t)

r

is a solution of the wave equation on S∗,T which vanishes for large |x|.

Solution This function is of the form previously considered, with

v(r, t) = f(r + t) + g(r − t).

This solves the one-dimensional wave equation as can be verified directly. Moreover,
since f, g have compact support, for any fixed t we find that u will vanish for sufficiently
large r.

c) Show that if f ∈ C3
c (R) is an odd function (i.e. f(s) = −f(−s) for all s) then

u(x, t) =
f(r + t) + f(r − t)

2r

extends as a C2 function which solves the wave equation on ST := (−T, T )×R3, with

u(0, t) = f ′(t).

Solution Using the fact that f is three times differentiable at t, we have

f(r + t) = f(t) + f ′(t)r +
1

2
f ′′(t)r2 +

1

6
f ′′′(t)r3 +R(r, t)

where
lim
r→0

R(t, r)

r3
= 0.

Making use of a similar expansion about −t and Inserting the condition that f is odd,
we deduce

u(x, t) =
f ′(t)r + 1

6f
′′′(t)r3 + R̂(r, t)

r
= f ′(t) +

1

6
f ′′′(t)r2 + R̃(r, t)

= f ′(t) +
1

6
f ′′′(t)δijx

ixj + R̃(|x| , t)

with R̃(|x| , t) ∈ C2(S∗,T ) and

lim
x→0

R̃(|x| , t)
|x|2

= 0.

This implies that R̃(·, t) ∈ C2(R3) and hence u(·, t) ∈ C2(R3). A similar calculation
establishes that ut(·, t) ∈ C1(R3) and utt(·, t) ∈ C0(R3), which completes the proof.
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*d) By considering a suitable sequence of functions f , or otherwise, deduce that there
exists no constant C independent of u such that the estimate

sup
ST

(|u|+ |ut|) ≤ C sup
Σ0

(|u|+ |ut|)

holds for all solutions u ∈ C2(ST ) of the wave equation which vanish for large |x|.

Solution Suppose that χ : R→ R satisfies:

a) χ is smooth and even.

b) χ(0) = 1

c) χ(s) = 0 for |s| > 1.

By the mean value theorem, we can easily see that supR |χ′| ≥ 1. Consider the sequence
of functions:

fk(s) =
1√
k

[
χ
(
ks− 2

√
k
)
− χ

(
ks+ 2

√
k
)]

for k a sufficiently large integer. We see that fk(s) is odd, smooth, and satisfies

sup

0<s<2k−
1
2

∣∣f ′k(s)∣∣ ≥ √k, sup
0<s

∣∣∣∣fk(s)s

∣∣∣∣ ≤ C.
Now let us construct a solution to the wave equation from fk as in part c). Clearly,
we have

sup
Σ0

|u| = sup
s≥0

∣∣∣∣fk(s)s

∣∣∣∣ ≤ C,
and

sup
ST

|u| ≥ sup
−T<t<T

|u(0, t)| ≥ sup

0<s<2k−
1
2

∣∣f ′k(s)∣∣ ≥ √k.
Where we take k sufficiently large that 2k−

1
2 < T . We also note that ut|Σ0

= 0.
Suppose now that there exists a constant C such that

sup
ST

|u| ≤ C sup
Σ0

(|u|+ |ut|)

holds for all solutions u ∈ C2(ST ) of the wave equation which vanish for large |x|.
Applying this to the sequence we have just constructed we find

√
k ≤ C

for all sufficiently large k, which is clearly absurd.



Example Sheet A M3P18: Fourier Analysis and Theory of Distributions

Exercise A.1. Suppose that λ1λ2 ≥ 0 and that U ⊂ X is a convex subset of a vector
space X. Show that:

λ1U + λ2U = (λ1 + λ2)U.

Exercise A.2. a) Suppose that (S, τ) is a topological space, and that β is a base for τ .
Show that:

i) If x ∈ S, then there exists some B ∈ β with x ∈ B.

ii) If B1, B2 ∈ β, then for every x ∈ B1 ∩B2 there exists B ∈ β with:

x ∈ B B ⊂ B1 ∩B2.

b) Conversely, suppose that one is given a set S and a collection β of subsets of S
satisfying i), ii) above. Define τ by:

U ∈ τ ⇐⇒ for all x ∈ U, there exists B ∈ β such that x ∈ B and B ⊂ U.

i.e. τ is the set of all unions of elements of β. Show that (S, τ) is a topological space,
with base β. We say that τ is the topology generated by β

c) Suppose that β, β′ both satisfy conditions i), ii) above and generate topologies τ ,
τ ′ respectively. Moreover, suppose that if B ∈ β then for every x ∈ B there exists
B′ ∈ β′ satisfying

x ∈ B′, and B′ ⊂ B

Then τ ⊂ τ ′.

Solution a) i) Since we have S ∈ τ , and that any element of τ can be written as a
union of elements of β, we must have that for each x ∈ S there is some B ∈ β
with x ∈ B.

ii) Since β is a base, if B1, B2 ∈ β they are open, and hence so is B1 ∩ B2. Since
every open set is a union of elements of β, for any point x ∈ B1 ∩B2, there must
be some B ∈ β with x ∈ B and B ⊂ B1 ∩B2.

b) The empty set belongs to τ trivially. S belongs to τ as a consequence of condition i).
Suppose that {Ui}i∈I is a set of elements of τ indexed by a set I. We need to show:

U =
⋃
i∈I

Ui ∈ τ.

Suppose x ∈ U . Then there is some i ∈ I such that x ∈ Ui. Since Ui ∈ τ , there exists
some B ∈ β with x ∈ B and B ⊂ Ui. But then since Ui ⊂ U , we have B ⊂ U and so
τ is closed under arbitrary unions. It remains to show then that the intersection of

Please send any corrections to c.warnick@imperial.ac.uk
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two elements of τ belong to τ . Suppose U1, U2 ⊂ τ , and let x ∈ U1 ∩ U2. Then by
definition of τ , there exist B1, B2 ∈ β with x ∈ B1, x ∈ B2 and B1 ⊂ U1, B2 ⊂ U2.
By condition ii), there exists B ∈ β with x ∈ B and B ⊂ B1 ∩ B2 ⊂ U1 ∩ U2, so
U1 ∩ U2 ∈ τ and τ is closed under pairwise intersection and we’re done.

c) Suppose that U ∈ τ , and let x ∈ U . Then by the definition of τ there exists B ∈ β
with B ⊂ U and x ∈ B. By the assumption, there exists B′ ∈ β′ with x ∈ B′ and
B′ ⊂ B ⊂ U , thus U ∈ τ ′ and we’re done.

Exercise A.3. Suppose (S1, τ1), (S2, τ2) and (S3, τ3) are topological spaces, and that
f : S1 × S2 → S3 is a continuous map. Show that for each a ∈ S1 and b ∈ S2, the maps

fa : S2 → S3,
y 7→ f(a, y),

f b : S1 → S3,
x 7→ f(x, b),

are continuous.
The condition that f is continuous with respect to the product topology is sometimes

called joint continuity, while the continuity of fa, f b is called separate continuity. Thus
joint continuity implies separate continuity. The converse is not true.

Solution Suppose that U ⊂ S3 is open, then by the definition of continuity, we know
that f−1(U) ⊂ S1 × S2 is open in the product topology. Thus for each (x, y) such
that f(x, y) ∈ U , we can find neighbourhoods U1, U2 of x, y respectively such that
U1 × U2 ⊂ f−1(U).

Now fix a and consider y ∈ f−1
a (U). By the previous argument there exists U1, U2

open in S1, S2 respectively such that a ∈ U1, y ∈ U2 and for any (x′, y′) ∈ U1 × U2 we
have f(x′, y′) ∈ U . In particular this holds for x′ = a and y′ ∈ U2. Thus the set U2 is
open in S2 and U2 ⊂ f−1

a (U). The case of f b follows by an identical argument.

Exercise A.4. Show that the base

βQ = {(p, q) : p, q ∈ Q, p < q} ,

generates the standard topology on R.

Solution 1. Since βQ ⊂ βR, it is clear that any open set with respect to the topology
generated by βQ is also an open set with respect to the topology generated by βR.

2. To show the converse, we must show that if B ∈ βR and x ∈ B is arbitrary, then
there exists B′ ∈ βQ with x ∈ B′ and B′ ⊂ B. To see this, recall that between any
two real numbers lies an element of Q. Thus if B = (a, b) and x ∈ (a, b), there
exists p, q ∈ Q with a < p < x < q < b. taking B′ = (p, q), we’re done.

Exercise A.5. Suppose that (S, d) is a metric space. Show that S is Hausdorff with
respect to the metric topology.
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Solution Suppose x, y ∈ S with x 6= y, and let r = d(x, y). Consider the sets U1 = B r
3
(x),

U2 = B r
3
(y). By definition of the metric topology these are both open sets, and moreover

x ∈ U1 and y ∈ U2. By the triangle inequality we have:

r = d(x, y) ≤ d(x, z) + d(y, z)

Thus if z ∈ U1, we must have d(y, z) > 2r
3 , so that z 6∈ U2, thus U1 ∩ U2 = ∅ and we have

shown that S is Hausdorff with the metric topology.

Exercise A.6. Let us take X = Rn, thought of as a vector space over R and define:

||(x1, . . . , xn)||p = (|x1|p + . . . |xn|p)
1
p , p ≥ 1.

a) Show that (Rn, ||·||p) is a normed vector space:

i) First check that the positivity and homogeneity property are satisfied.

ii) Establish the triangle inequality for the special case p = 1.

iii) Next prove Young’s inequality: if a, b ∈ R+ and p, q > 1 with p−1 + q−1 = 1 then:

ab ≤ ap

p
+
bq

q

Hint: set t = p−1, consider the function log [tap + (1− t)bq] and use the concavity
of the logarithm

iv) With p, q > 1 such that p−1 + q−1 = 1, show that if ||x||p = 1 and ||y||q = 1 then

n∑
i=1

|xiyi| ≤ 1.

Deduce Hölder’s inequality:

n∑
i=1

|xiyi| ≤ ||x||p ||y||q , for all x, y,∈ Rn.

v) Show that

||x+ y||pp ≤
n∑
i=1

|xi| |xi + yi|p−1 +

n∑
i=1

|yi| |xi + yi|p−1

vi) Apply Hölder’s inequality to deduce:

||x+ y||pp ≤
(
||x||p + ||y||p

)
||x+ y||p−1

p

and conclude
||x+ y||p ≤ ||x||p + ||y||p .
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b) Show that the metric topology of (Rn, ||·||p) agrees with the standard topology.
Hint: Use part c) of Exercise A.2

Solution a) i) We fist note that ||x||p ≥ 0, with equality if and only if x1 = x2 = · · · =
xn = 0. The homogeneity property ||ax|| = |a| ||x||· is easily verified.

ii) For the case p = 1, the triangle inequality follows easily using the fact that for
a, b ∈ R we have |a+ b| ≤ |a|+ |b| as can be shown by considering the four possible
choices of sign for a, b separately.

iii) Since p > 1, setting t = p−1 we have 0 < t < 1. Now recall that the logarithm
function is concave. This implies that if 0 < x, y, and 0 < t < 1 then:

t log x+ (1− t) log y ≤ log(tx+ (1− t)y).

Applying this with x = ap, y = bq we have for the LHS:

t log x+ (1− t) log y =
1

p
log ap +

1

q
log bq = log (ab) .

and tx+ (1− t)y = ap

p + bq

q . Thus:

log (ab) ≤ log

(
ap

p
+
bq

q

)
.

The result follows from exponentiating and using the monotonicity of the expo-
nential.

iv) We apply Young’s inequality to obtain:

n∑
i=1

|xiyi| ≤
n∑
i=1

(
|xi|p

p
+
|yi|q

q

)
.

Next we use that ||x||p = 1 to deduce that

1 = ||x||pp =

n∑
i=1

|xi|p

and similarly for y, so that:

n∑
i=1

|xiyi| ≤
1

p
+

1

q
= 1.

Now suppose x, y ∈ Rn. If either x = 0 or y = 0 then Hölder’s inequality holds
trivially, so we can suppose ||x||p 6= 0 and ||y||q 6= 0. We define:

x′ =
1

||x||p
x, y′ =

1

||y||q
y.
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These satisfy ||x′||p = ||y′||q = 1, so we can apply the first result to obtain:

1 ≥
n∑
i=1

∣∣x′iy′i∣∣ =
1

||x||p ||y||q

n∑
i=1

|xiyi|

Multiplying by ||x||p ||y||q we are done.

v) We estimate

||x+ y||pp =
n∑
i=1

|xi + yi|p =
n∑
i=1

|xi + yi| |xi + yi|p−1

≤
n∑
i=1

|xi| |xi + yi|p−1 +
n∑
i=1

|yi| |xi + yi|p−1 ,

using the triangle inequality for |·|.
vi) We apply Hölder’s inequality to each sum separately. We have that q−1 = 1− p−1

so that q = p
p−1

n∑
i=1

|xi| |xi + yi|p−1 ≤ ||x||p

[
n∑
i=1

(
|xi + yi|p−1

)q] 1
q

= ||x||p

[
n∑
i=1

|xi + yi|p
] p−1

p

= ||x||p ||x− y||
p−1
p

b) Denote by τ the standard topology on Rn. Recall that a base is given by the sets
(a1, b1)× (a2, b2)× · · · × (an, bn) for real numbers ai, bi with ai < bi, while a base for
the norm topology is given by the balls Br(x) = {y ∈ Rn : ||y − x||p < r}. Suppose

B = (a1, b1)× (a2, b2)× · · · × (an, bn),

and that ai < xi < bi, so that x ∈ B. Then if y satisfies |yi − xi| < min{−ai, bi}, we
have y ∈ B. Thus there exists ε > 0 such that if maxi |yi − xi| < ε, we have x ∈ B.
Now, note that

max
i
|yi − xi| ≤ ||x||p ,

so that if y ∈ Bε(x), we must have y ∈ B. Thus Bε(x) ⊂ B. This proves that τ ⊂ τp.
Conversely, suppose that y ∈ Br(x) and suppose that z ∈ (y1 − δ, y1 + δ)× · · · (yn −
δ, yn + δ) for some δ > 0. We then have:

||y − z||p ≤ n
1
p δ

By the triangle inequality we have

||z − x||p ≤ ||z − y||p + ||y − x||p
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Now, since y ∈ Br(x), there exists η > 0 such that ||y − x||p ≤ r − η. Taking δ = η

2n
1
p

we conclude
||z − x||p ≤ r −

η

2

and so z ∈ Br(x) and (y1 − δ, y1 + δ)× · · · (yn − δ, yn + δ) ⊂ Br(x). Thus τp ⊂ τ

Exercise A.7 (?). Let X = C[0, 1], the set of continuous functions on the closed interval
[0, 1]. For f ∈ X, p ≥ 0 define:

||f ||p =

(∫ 1

0
|f(x)|p dx

) 1
p

a) Show that X is a vector space over R, where scalar multiplication and vector addition
are defined pointwise.

b) Establish Hölder’s inequality:

||fg||1 ≤ ||f ||p ||g||q

for p, q > 1 with p−1 + q−1 = 1.

c) Show that (X, ||·||p) is a normed space.

d) Suppose p ≤ p′. Show that:
||f ||p ≤ ||f ||p′

e) Let τp be the metric topology of (X, ||·||p). Show that if p ≤ p′:

τp ⊂ τp′ .

f) Consider the sequence of functions:

fn(x) =

{
nγ−1 0 ≤ x < 1

n
1
nx
−γ 1

n ≤ x ≤ 1

where n = 1, 2, . . .

i) Show that fn ∈ C[0, 1] and

lim
n→∞

||fn||p =


0 γ < p+1

p(
p+1
p

) 1
p

γ = p+1
p

∞ γ > p+1
p

ii) By choosing γ carefully, show that if p < p′ then

τp′ 6⊂ τp.
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Hint: in parts b), c) follow the same steps as for the finite dimensional case in Exercise
A.6.

Solution a) If f, g ∈ C[0, 1] and λ ∈ R, then defining h : x 7→ f(x) + λg(x) we have
h ∈ C[0, 1]. The distributive property follows straightforwardly.

b) First suppose that f, g ∈ C[0, 1] with ||f ||p = ||g||q = 1. We calculate

||fg||1 =

∫ 1

0
f(x)g(x)dx

≤
∫ 1

0

(
f(x)p

p
+
g(x)q

q

)
dx

=
||f ||pp
p

+
||g||qq
q

=
1

p
+

1

q
= 1.

The case of general f, g follows by scaling. If f or g is identically zero then the
result is trivially true, so can assume that f is non-zero at some point x0 ∈ [0, 1].
By the continuity of f , we must have that |f(x)| > |f(x0)| /2 on some open interval
(x0 − ε, x0 + ε) with ε > 0. Thus we can estimate ||f ||p > ε |f(x0)| > 0. Similarly,
if g is not identically zero then ||g||q > 0. Thus we can define F (x) = f(x)/ ||f ||p,
G(x) = g(x)/ ||g||q, which have ||F ||p = 1, ||G||q = 1. Applying the result above, we
quickly deduce Hölder’s inequality.

c) The homogeneity property is straightforward to verify. Next assume that f is non-zero
at some point x0 ∈ [0, 1]. By the continuity of f , we must have that |f(x)| > |f(x0)| /2
on some open interval (x0 − ε, x0 + ε) with ε > 0. Thus we can estimate ||f ||p >
ε |f(x0)| > 0. Thus ||f ||p = 0 if and only if f ≡ 0. To show the triangle inequality, we
estimate

||f + g||pp =

∫ 1

0
|f(x) + g(x)|p dx =

∫ 1

0
|f(x) + g(x)| |f(x) + g(x)|p−1 dx

≤
∫ 1

0

(
|f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1

)
dx

Now, we apply Hölder’s inequality to find:∫ 1

0
|f(x)| |f(x) + g(x)|p−1 dx ≤ ||f ||p

∣∣∣∣∣∣|f + g|p−1
∣∣∣∣∣∣

p
p−1

= ||f ||p ||f + g||p−1
p

and similarly with f and g swapped. Thus we have

||f + g||pp ≤
(
||f ||p + ||g||p

)
||f + g||p−1

p

whence the triangle inequality for the norm follows.
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d) Since p′

p > 1, we can apply the Hölder inequality as follows:

||f ||pp = |||f |p||1
≤ |||f |p|| p′

p

||1|| p′
p′−p

= ||f ||pp′ .

Here we have used that ||1||q = 1. Taking the pth root of both sides we are done.

e) Suppose that U ∈ τp. Given g ∈ U , we can find ε > 0 such that

{g : ||g − f ||p < ε} ⊂ U.

Now, since ||g − f ||p ≤ ||g − f ||p′ , we have that

{g : ||g − f ||p′ < ε} ⊂ {g : ||g − f ||p < ε}.

Thus given g ∈ U , we have found ε > 0 such that

{g : ||g − f ||p′ < ε} ⊂ U,

which is precisely the condition that U ∈ τp′ .

f) i) The continuity is straightforward to check, since we just need to verify that there
is no jump at x = n−1, which indeed there is not. We calculate (for γ 6= p−1)

||fn||pp =
1

n

(
nγ−1

)p
+

∫ 1

1
n

(
1

n
x−γ

)p
dx

= nγp−p−1 +

[
n−p

x1−γp

1− γp

]1

1
n

=
γp

γp− 1
nγp−p−1 − 1

γp− 1
n−p

The second term always decays for large n. The first term grows if γ > (p+ 1)/p,
decays if γ < (p + 1)/p and for the marginal case it is equal to the constant
(p+ 1)/p. To deal with the case γp = 1, we calculate:

||fn||pp =
1

n

(
nγ−1

)p
+

∫ 1

1
n

(
1

n
x−γ

)p
dx

= n−p +
[
n−p log x

]1
1
n

= n−p(1 + log n)

which tends to zero for large n.
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ii) To show that τp′ 6⊂ τp, it suffices to exhibit one element of τp′ which is not in τp.
Consider the set

U = {f : ||f ||p′ < 1}

Clearly, we have that U ∈ τp′ . Suppose that U ∈ τp. Then there must exist some
ε > 0 such that the set

Bε = {f : ||f ||p < ε}

is contained in U , i.e., there is some ε such that Bε ⊂ U . Now, since p′ > p, there
exists some γ such that

p′ + 1

p′
< γ <

p+ 1

p
.

Consider the sequence of fn constructed above with such a γ. Clearly, we must
have that there exists N such that fn 6∈ U for all n > N . On the other hand,
there exists M such that fn ∈ Bε for all n > M , contradicting the assumption
that Bε ⊂ U .

Exercise A.8. Verify that if (D, s) is a metric space, then the metric topology defines
the same notions of convergence and continuity as the standard definitions for a metric
space.

Exercise A.9. Let (X, τ) be a topological vector space

a) Show that if (xn)∞n=1 is a τ -Cauchy sequence, then {xn}∞n=1 is bounded.

b) Fix a local base β̇. Show that a sequence (xn)∞n=1 is τ -Cauchy if and only if for any
B ∈ β̇ we can find an integer N such that

xn − xm ∈ B, for all n,m ≥ N.

Solution a) Let W , be a neighbourhood of the origin. By part 1. of the proof of Lemma
B.12, we can find U ⊂W a balanced open neighbourhood of the origin with U+U ⊂W .
Now, by the definition of a Cauchy sequence we can find N such that xm−xn ∈ U ′ for
all n,m ≥ N . Since U ′ is balanced, this implies that t−1(xn − xm) ∈ U ′ for all t > 1.
Moreover, since {x1, . . . , xN} is bounded, there exists s > 1 such that s−1xm ∈ U ′ for
m ≤ N . For n ≥ N , we have

s−1xn = s−1(xn − xN ) + s−1xN ∈ U ′ + U ′ ⊂W.

Thus xn ∈ sW for n ≥ 0 and we’re done.

b) If (xn) is τ -Cauchy, then since B is a neighbourhood of the origin, by the definition of
τ -Cauchy there exists N such that

xn − xm ∈ B, for all n,m ≥ N.
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Now suppose that for any B ∈ β̇ we can find an integer N such that

xn − xm ∈ B, for all n,m ≥ N.

Let U be any neighbourhood of the origin. Since β̇ is a local base, there exists B ∈ β̇
with B ⊂ U . By the hypothesis, there exists N such that for all n, n > N we have

xn − xm ∈ B ⊂ U.


