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FOURIER MULTIPLIERS ON GRADED LIE GROUPS

BY

VÉRONIQUE FISCHER (Bath) and MICHAEL RUZHANSKY (Gent and London)

Abstract. We study multipliers on graded nilpotent Lie groups defined via group
Fourier transform. More precisely, we show that Hörmander-type conditions on the Fourier
multipliers imply Lp-boundedness. We express these conditions using difference operators
and positive Rockland operators. We also obtain a more refined condition using Sobolev
spaces on the dual of the group which are defined and studied in this paper.

1. Introduction. The Mikhlin multiplier theorem [24, 25] states that if
a function σ defined on Rn \{0} has at least [d/2] + 1 continuous derivatives
that satisfy

(1.1) ∀α ∈ Nd0, |α| ≤ [d/2] + 1, |∂ασ(ξ)| ≤ Cα|ξ|−|α|,
then the Fourier multiplier operator Tσ associated with σ, initially defined
on Schwartz functions via

(1.2) Tσφ := F−1{σφ̂},
admits a bounded extension on Lp(Rd) for all 1 < p < ∞. Above, [t] is
the integer part of t and Fφ = φ̂ denotes the Euclidean Fourier transform
of a function φ. Hörmander improved the Mikhlin multiplier theorem by
showing [20] that a sufficient condition for Tσ to be bounded on Lp(Rd) is
the membership of σ locally uniformly to a Sobolev space Hs(Rd) for some
s > d/2, that is,

(1.3) ∃η ∈ D(0,∞), η 6≡ 0, sup
r>0
‖σ(r ·)η(| · |2)‖Hs <∞.

If a multiplier satisfies the Hörmander condition (1.3) with s close enough
to d/2, then it satisfies the Mikhlin condition (1.1). Anisotropic analogues
of the Hörmander condition (1.3) have been studied by Rivière [29].

In this paper, we present analogues of the Hörmander and Mikhlin con-
ditions in the context of Lie groups equipped with (anisotropic) dilations,
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and show that they imply the Lp-boundedness of the corresponding Fourier
multiplier operators. In the context of (unimodular type 1) Lie groups, the
Fourier multipliers are defined formally as in (1.2) but with the Euclidean
Fourier transform replaced with the group Fourier transform. A multiplier
symbol σ is now a field of operators parametrised by the dual Ĝ of the
group G. Any two multiplier symbols may not necessarily commute.

The Lp-multiplier problem has been extensively studied in various con-
texts. On Lie groups, a large part of these studies were primarily concerned
with spectral multipliers of one (or several) operator such as a sub-Laplacian
(see e.g. [1, 27]), with the difficult and still open question of the optimality
of a Mikhlin–Hörmander condition in terms of the topological or homoge-
neous dimensions [18, 28, 23] in the nilpotent case. Much fewer works were
devoted to Fourier multipliers. The first study of Fourier multipliers on Lie
groups dates back to 1971 with Coifman and Weiss’ monograph [5] where
they developed the Calderón–Zygmund theory in the setting of spaces of
homogeneous types and as an application studied the Fourier multipliers
of SU(2); see also [6, 7]. But then the research into Fourier multipliers on
compact Lie groups focused on the central multipliers [34, 36, 37, 38]. This
was so until the recent results on Fourier multipliers on compact Lie groups
by the second author and Jens Wirth [32, 33], and by the first author [13].
To the authors’ knowledge, the rest of the literature on the Lp-multiplier
problem for Fourier multipliers on Lie groups is restricted to the motion
group (Rubin in 1976 [31]) and to the Heisenberg group stemming from the
work of De Michele and Mauceri in 1979 [9].

As in [32, 33, 13], our hypotheses are expressed using difference operators.
The methods of proof rely on the Calderón–Zygmund theory adapted to the
setting of spaces of homogeneous type as in [5], see also [29]. These meth-
ods are the classical approach for proving Fourier or spectral Lp-multiplier
problems on nilpotent Lie groups. In the case of the Heisenberg group, our
conditions recover and generalise the results in [9], using the explicit descrip-
tion of the difference operators from [15, Chapter 6].

Multiplier theorems and other results on nilpotent Lie groups have a
wealth of applications; see [30] for seminal results and motivation in analysis
on nilpotent Lie groups, and [35] for the case of the Heisenberg group. Our
Mikhlin–Hörmander result was already used in [4] and may lead to further
advances in understanding Besov spaces and their applications.

In this paper, we will give the analogues of both Mikhlin- and Hörmander-
type conditions for the Mikhlin–Hörmander multiplier theorem. The former
is given in terms of difference operators on the unitary dual Ĝ of the group G,
which are analogues of derivatives with respect to dual variables in the case
of Rn. The latter is given in terms of Sobolev spaces on Ĝ that we will define
and study in this paper. We will also see that Theorem 1.1 under Mikhlin-
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type conditions is implied by the Hörmander-type condition of Theorem 1.2.
The definitions of graded nilpotent Lie groups, homogeneous dimensions,
dilations weights, Rockland operators, difference operators ∆α etc. will be
recalled in Section 2.

Theorem 1.1. Let G be a graded nilpotent Lie group with homogeneous
dimension Q. Let σ = {σ(π) : π ∈ Ĝ} be a measurable field of operators
in L∞(Ĝ). Assume that there exist a positive Rockland operator R and an
integer N > Q/2 divisible by the dilation weights such that for all |α| ≤ N
the following quantities are finite:

(1.4) sup
π∈Ĝ
‖π(R)[α]/ν∆ασ‖L (Hπ) and sup

π∈Ĝ
‖∆ασπ(R)[α]/ν‖L (Hπ),

where ν is the degree of R. Then the Fourier multiplier operator Tσ corre-
sponding to σ is bounded on Lp(G) for any 1 < p <∞. Furthermore,

‖Tσ‖L (Lp(G))

≤ C
∑

[α]≤N

sup
π∈Ĝ
‖π(R)[α]/ν∆ασ‖L (Hπ) + sup

π∈Ĝ
‖∆ασπ(R)[α]/ν‖L (Hπ),

with C = Cp,G independent of σ.

Theorem 1.1 applied to the abelian Euclidean setting, that is, (Rd,+)
with the usual isotropic dilation with R being the Laplace operator, yields
the Mikhlin theorem. This will also be the case for Theorem 1.2. Indeed,
in the Euclidean abelian setting, π(R) is replaced with |ξ|2 where ξ is the
(Fourier) dual variable.

We now give the analogue of the Hörmander-type condition. In Defini-
tion 4.5 and the subsequent discussion we introduce and investigate uni-
formly local right- and left-Sobolev spaces Hs

l.u.,R(Ĝ) and Hs
l.u.,L(Ĝ), respec-

tively, on the unitary dual Ĝ. Using these spaces we can then define uniformly
local Sobolev spaces on Ĝ by

Hs
l.u.(Ĝ) := Hs

l.u.,R(Ĝ) ∩Hs
l.u.,L(Ĝ),

with the norm

‖σ‖Hs
l.u.,η,R := max(‖σ‖Hs

l.u.,R,η,R, ‖σ‖Hs
l.u.,L,η,R),

depending on the choice of η ∈ D(0,∞) and a positive Rockland operator R,
and in Proposition 4.6 we show that different choices of η and R lead to
equivalent norms. Then we have

Theorem 1.2. Let G be a graded nilpotent Lie group. Let σ = {σ(π) :

π ∈ Ĝ} be a measurable field of operators in L2(Ĝ). If σ ∈ Hs
l.u.(Ĝ) for some

s > Q/2, where Q is the homogeneous dimension of G, then the correspond-



4 V. FISCHER AND M. RUZHANSKY

ing operator T = Tσ is bounded on Lp(G) for any 1 < p <∞. Furthermore,

‖T‖L (Lp(G)) ≤ C‖σ‖Hs
l.u.,η,R,

where C > 0 is a constant independent of σ but may depend on p, s,G and
the choice of η ∈ D(0,∞) and a positive Rockland operator R.

Theorem 1.2 will be reformulated in Theorem 4.11 and further refined in
Corollary 4.12.

The paper is organised as follows. In Section 2, we recall the necessary
material regarding the setting. In Section 3, we define and study Sobolev
spaces on Ĝ. In Section 4, we present our Mikhlin–Hörmander condition. In
Section 5, we prove the results of the previous section.

Notation. We write N0 = {0, 1, 2, . . .} and N = {1, 2, . . .}. IfH1 andH2

are two Hilbert spaces, we denote by L (H1,H2) the Banach space of bound-
ed operators fromH1 toH2. IfH1 = H2 = H, then we abbreviate L (H1,H2)
to L (H). We may allow ourselves to write A . B when A is less than B
up to a constant, and A � B when the quantities A and B are equivalent in
the sense that there exists a constant such that C−1A≤B≤CA.

2. Preliminaries. In this section, after defining graded Lie groups, we
recall their homogeneous structure, some general representation theory in
this context, as well as the definition and some properties of their Rockland
operators.

2.1. Graded and homogeneous Lie groups. Here we briefly recall
the definition of graded nilpotent Lie groups and their natural homogeneous
structure. A complete description of the notions of graded and homogeneous
nilpotent Lie groups may be found in [16, Ch. 1] and [15, Ch. 3].

We will be concerned with graded Lie groups G, which means that G
is a connected and simply connected Lie group whose Lie algebra g ad-
mits an N-gradation g =

⊕∞
`=1 g` where the g`, ` = 1, 2, . . . , are vector

subspaces of g, almost all equal to {0}, and satisfying [g`, g`′ ] ⊂ g`+`′ for
any `, `′ ∈ N. This implies that the group G is nilpotent. Examples of such
groups are the Heisenberg group and, more generally, all stratified Lie groups
(which by definition correspond to the case of g1 generating the full Lie al-
gebra g).

We construct a basis X1, . . . , Xn of g adapted to the gradation, by choos-
ing a basis {X1, . . . , Xn1} of g1 (this basis is possibly reduced to ∅), then
a basis {Xn1+1, . . . , Xn1+n2} of g2 (possibly ∅ as well as the others) and
so on. Via the exponential mapping expG : g → G, we identify the points
(x1, . . . , xn) ∈ Rn with the points x = expG(x1X1 + · · ·+ xnXn) in G. Con-
sequently we allow ourselves to denote by C(G), D(G) and S(G) etc. the
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spaces of continuous functions, of smooth and compactly supported func-
tions, of Schwartz functions on G identified with Rn etc., and similarly for
distributions with the duality notation 〈·, ·〉.

This basis also leads to a corresponding Lebesgue measure on g and
the Haar measure dx on the group G, hence Lp(G) ∼= Lp(Rn). The group
convolution of two functions f and g, for instance integrable, is defined via

(f ∗ g)(x) :=
�
f(y)g(y−1x) dy.

The convolution is not commutative: in general, f ∗g 6= g ∗f , but the Young
convolution inequalities hold:

(2.1) ‖f ∗ g‖Lr(G) ≤ ‖f‖Lp(G)‖g‖Lq(G), p, q, r ∈ [1,∞], 1 +
1

r
=

1

p
+

1

q
.

The coordinate functionG 3 x = (x1, . . . , xn) 7→ xj ∈ R is denoted by xj .
More generally, for every multi-index α ∈ Nn0 we define xα := xα1

1 . . . xαnn
as a function on G. Similarly we set Xα = Xα1

1 . . . Xαn
n in the universal

enveloping Lie algebra U(g) of g.
For any r > 0, we define the linear mapping Dr : g→ g by DrX = r`X

for everyX ∈ g`, ` ∈ N. Then the Lie algebra g is equipped with the family of
dilations {Dr : r > 0} and becomes a homogeneous Lie algebra in the sense
of [16]. We arrange the set of integers ` ∈ N such that g` 6= {0} into the
increasing sequence υ1, . . . , υn of positive integers counted with multiplicity,
the multiplicity of g` being its dimension. In this way, the integers υ1, . . . , υn
become the weights of the dilations and we haveDrXj = rυjXj , j = 1, . . . , n,
on the basis of g choosen, and we have Xj ∈ gυj for j = 1, . . . , n. The
associated group dilations are defined by

Dr(x) = r · x := (rυ1x1, . . . , r
υnxn), x = (x1, . . . , xn) ∈ G, r > 0.

In a canonical way this leads to the notions of homogeneity for functions
and operators. For instance the degree of homogeneity of xα and Xα, viewed
respectively as a function and a differential operator on G, is

[α] =
∑
j

υjαj .

Indeed, let us recall that a vector of g defines a left-invariant vector field
on G and, more generally, that the universal enveloping Lie algebra of g
is isomorphic to the left-invariant differential operators; we keep the same
notation for the vectors and the corresponding operators.

Recall that a homogeneous quasi-norm on G is a continuous function
| · | : G → [0,∞) homogeneous of degree 1 on G which vanishes only at 0.
This often replaces the Euclidean norm in the analysis on homogeneous Lie
groups, for instance in the following well-known properties:
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Proposition 2.1.

(1) Any homogeneous quasi-norm | · | on G satisfies the triangle inequality
up to a constant:

∃C ≥ 1 ∀x, y ∈ G |xy| ≤ C(|x|+ |y|).
It partially satisfies the reverse triangle inequality:

(2.2) ∀b ∈ (0, 1) ∃C = Cb ≥ 1 ∀x, y ∈ G |y| ≤ b|x| ⇒
∣∣|xy| − |x|∣∣ ≤ C|y|.

(2) Any two homogeneous quasi-norms | · |1 and | · |2 are equivalent in the
sense that

∃C > 0 ∀x ∈ G C−1|x|2 ≤ |x|1 ≤ C|x|2.
An example of a homogeneous quasi-norm is given via

(2.3) |x|νo :=
( n∑
j=1

x
2νo/υj
j

)1/(2νo)
,

with νo a common multiple to the weights υ1, . . . , υn.
We will use the Young inequalities together with the properties of quasi-

norms in the following way:

Lemma 2.2. Let | · | be a quasi-norm and let s ≥ 0. Set ωs = (1 + | · |)s.
Let p, q, r be as in Young’s inequality in (2.1). If f and g are measurable
functions, then (with possibly unbounded quantities)

‖ωs f ∗ g‖Lr(G) ≤ C‖ωsf‖Lp(G)‖ωsg‖Lq(G),

where the constant C is independent of f, g but may depend on s,G, | · |.
Proof. The triangular inequality (see Proposition 2.1) easily implies

(2.4) ∃C = Cs,|·| ∀x, y ∈ G ωs(x) ≤ Cωs(xy−1)ωs(y),

yielding ωs(x)|f∗g|(x) ≤ C|ωsf |∗|ωsg|.We conclude with Young’s inequality
(see (2.1)).

Various aspects of analysis on G can be developed in a comparable way
with the Euclidean setting, sometimes replacing the topological dimension
n =

∑∞
`=1 dim g` of the group G by its homogeneous dimension

Q :=
∞∑
`=1

`dim g` = υ1 + · · ·+ υn.

For example, there is an analogue of polar coordinates on homogeneous
groups with Q replacing n (see [16]):

(2.5) ∀f ∈ L1(G)
�

G

f(x) dx =

∞�

0

�

S

f(ry)rQ−1 dσ(y) dr,

with σ a (unique) positive Borel measure on the unit sphere S := {x ∈ G :
|x| = 1}. This implies the following simple embeddings:
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Corollary 2.3. Let | · | be a fixed homogeneous quasi-norm on G. If
s > Q/2, then there exists C > 0 such that for any measurable function f
we have

‖f‖L1(G) ≤ C‖(1 + | · |)sf‖L2(G).

Moreover, as long as s − ε > Q/2, there exists C > 0 such that for any
measurable function f we have

‖(1 + | · |)εf‖L1(G) ≤ C‖(1 + | · |)sf‖L2(G).

Proof. By Cauchy–Schwarz’ or Hölder’s inequality, we have
‖(1 + | · |)εf‖L1(G) ≤ Cs,ε‖(1 + | · |)sf‖L2(G),

where Cs := ‖(1+|·|)−s+ε‖L2(G). Using the polar change of coordinates (2.5),
we see that Cs is finite for s− ε > Q/2.

We will need an L1-mean value property:

Lemma 2.4. There exists C > 0 such that for any h ∈ G and any f ∈
C1(G) we have

‖f − f(·h)‖L1(G) ≤ C
n∑
`=1

|h|υ`‖X`f‖L1(G),

‖f − f(h ·)‖L1(G) ≤ C
n∑
`=1

|h|υ`‖X̃`f‖L1(G).

In this paper, if X ∈ g, then we keep the same notation X for the left-
invariant vector field while X̃ denotes the right-invariant vector field, that
is, for any function f ∈ C∞(G) and x ∈ G we have

Xf(x) =
d

ds

∣∣∣∣
s=0

f(x expG(sX)) while X̃f(x) =
d

ds

∣∣∣∣
s=0

f(expG(sX)x).

We adapt the argument of [16, Mean Value Theorem 1.33] and [15, §3.1.8].

Proof of Lemma 2.4. Any h ∈ G may be written as
h = h1 . . . hn with h` := exp(t`X`) and |t`| ≤ C|h|1/υ` .

Therefore,

‖f − f(h·)‖L1(G) ≤
n∑
j=1

�

G

|f(hjhj+1 . . . hnx)− f(hj+1 . . . hnx)| dx

≤
n∑
j=1

�

G×[0,tj ]

|X̃jf(exp(sXj)hj+1 . . . hnx)| dx ds

=

n∑
j=1

�

G×[0,tj ]

|X̃jf(y)| dy ds =

n∑
j=1

|tj |
�

G

|X̃jf(y)| dy.

This shows the right case, and the left case is similar.
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2.2. The dual of G and the Plancherel theorem. Here we set
some notation and recall some properties regarding the representations of
the group G, especially the Plancherel theorem, and its enveloping Lie al-
gebra U(g). The (very) general theory may be found in [10], for a description
more adapted to our particular context see [15, Ch. 1]. Note that we will not
use the orbit method [8].

In this paper, we always assume that the representations of the group G
are strongly continuous and acting on separable Hilbert spaces. For a unitary
representation π of G, we keep the same notation for the corresponding
infinitesimal representation which acts on the universal enveloping algebra
U(g) of the Lie algebra of the group. It is characterised by its action on g:

(2.6) π(X) = ∂t=0π(etX), X ∈ g.

The infinitesimal action acts on the space H∞π of smooth vectors, that is,
the space of vectors v ∈ Hπ such that the function G 3 x 7→ π(x)v ∈ Hπ is
of class C∞.

For a unitary representation π and any f ∈ L1(G), we define the operator

π(f) =
�

G

f(x)π(x)∗ dx.

One easily checks

(2.7) ‖π(f)‖L (Hπ) ≤ ‖f‖L1(G).

We denote by Ĝ the set of classes of unitary irreducible representations
modulo unitary equivalence (see [10] or [15]). It is a standard Borel space
(i.e. a separable complete metrisable topological space equipped with the
sigma-algebra generated by the open sets).

From now on, we may identify a unitary irreducible representation with
its class in Ĝ. This leads to the notion of group Fourier transform for a
function f ∈ L1(G) at π ∈ Ĝ:

π(f) ≡ f̂(π) ≡ FG(f)(π).

The Plancherel measure is the unique positive Borel standard measure µ
on Ĝ such that for any f ∈ Cc(G), we have�

G

|f(x)|2 dx =
�

Ĝ

‖FG(f)(π)‖2HS(Hπ) dµ(π).

Here ‖ · ‖HS(Hπ) denotes the Hilbert–Schmidt norm on the space HS(Hπ) ∼
Hπ⊗H∗π of Hilbert–Schmidt operators on the Hilbert space Hπ. This implies
that the group Fourier transform extends unitarily from L1(G) ∩ L2(G) to
L2(G) onto

L2(Ĝ) :=
�

Ĝ

Hπ ⊗H∗π dµ(π),
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which we identify with the space of µ-square integrable fields on Ĝ. The
Plancherel formula may be rephrased as

(2.8) ‖f‖L2(G) = ‖f̂‖
L2(Ĝ)

.

The orbit method furnishes an expression for the Plancherel measure µ
(see [8, Section 4.3]). However we will not need it here.

The general theory on locally compact unimodular groups of type I ap-
plies [10]: let L (L2(G)) be the space of bounded linear operators on L2(G)
and let LL(L2(G)) be the subspace of those operators T ∈ L (L2(G)) which
are left-invariant, that is, commute with the left translation:

T (f(g ·))(g1) = (Tf)(gg1), f ∈ L2(G), g, g1 ∈ G.

Then there exists a field of bounded operators T̂ (π) ∈ L (Hπ), π ∈ Ĝ, such
that

∀f ∈ L2(G) FG(Tf)(π) = T̂ (π)f̂(π) for µ-almost all π ∈ Ĝ.
Moreover the operator norm of T is equal to

‖T‖L (L2(G)) = sup
π∈Ĝ
‖T̂ (π)‖L (Hπ).

The supremum here has to be understood as the essential supremum with
respect to the Plancherel measure µ. By the Schwartz kernel theorem, any
operator T ∈ LL(L2(G)) is a convolution operator and we denote by Tδ0 ∈
S ′(G) its convolution kernel: Tf = f ∗ (Tδ0), f ∈ S(G). One may ex-
tend the definition of the group Fourier transform to these distributions
via FG{Tδ0} = T̂ (π).

Denoting by L∞(Ĝ) the space of fields of operators σπ ∈ L (Hπ), π ∈ Ĝ,
with

‖σ‖
L∞(Ĝ)

:= sup
π∈Ĝ
‖σπ‖L (Hπ) <∞,

modulo equivalence under the Plancherel measure µ, we have shown that
T ∈ L (L2(G)) implies {FG{Tδ0} = T̂ (π) : π ∈ Ĝ} ∈ L∞(Ĝ). Conversely,
to any field σ = {σπ : π ∈ Ĝ} in L∞(Ĝ), we associate the Fourier multiplier
operator Tσ via

(2.9) FG{Tσ(φ)}(π) = σπφ̂(π), φ ∈ L2(G).

The Plancherel formula implies that Tσ ∈ LL(L2(G)) with operator norm
bounded by ‖σ‖

L∞(Ĝ)
. As recalled above, the operator norm is in fact equal

to the L∞(Ĝ)-norm of σ. Thus we have obtained the isometric isomorphism
of von Neumann algebras

L∞(Ĝ)→ LL(L2(G)), σ 7→ Tσ,

with inverse given via σ = FG{Tσδ0}.
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2.3. Rockland operators. Here we recall the definition of Rockland
operators and their main properties.

Definition 2.5. A Rockland operator R on G is a left-invariant differ-
ential operator on G which is homogeneous of positive degree and such that
for each unitary irreducible non-trivial representation π on G, the operator
π(R) is injective on H∞π , that is,

∀v ∈ H∞π π(R)v = 0⇒ v = 0.

Although the definition of a Rockland operator would make sense on a
homogeneous Lie group (in the sense of [16]), it turns out that the existence of
a (differential) Rockland operator on a homogeneous group implies that the
homogeneous group may be assumed to be graded (cf. [26, 11], see also [15,
Proposition 4.1.3]). This explains why we have chosen the setting of graded
Lie groups for this paper. Helffer and Nourrigat proved [19] the Rockland
conjecture, that is, that the Rockland operators are all the hypoelliptic left-
invariant differential operators on a given graded Lie group. Hence Rockland
operators may be viewed as analogues of elliptic operators or more generally
hypoelliptic operators (with any degree of homogeneity) in a non-abelian
context.

Some authors may have different conventions than ours regarding Rock-
land operators: for instance some choose to consider right-invariant operators
and some consider operators which are not necessarily homogeneous. How-
ever, the choice of conventions does not interfere with the study of the objects
themselves.

Example 2.6. In the stratified case, one can easily check that any (left-
invariant negative) sub-Laplacian, that is,

(2.10) L = Z2
1 + · · ·+ Z2

n′

with Z1, . . . , Zn′ forming any basis of the first stratum g1

is a Rockland operator.
Example 2.7. On any graded group G, it is not difficult to see that the

operator

(2.11)
n∑
j=1

(−1)
νo
υj cjX

2 νo
υj

j with cj > 0,

is a Rockland operator of homogeneous degree 2νo if νo is any common
multiple of υ1, . . . , υn.

Hence Rockland operators do exist on any graded Lie group (not neces-
sarily stratified).

If a Rockland operator R is formally self-adjoint, that is, R∗ = R as
elements of the universal enveloping algebra U(g), then R and π(R) admit
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self-adjoint extensions on L2(G) and Hπ respectively (see [16, Chapter 3.B]
or [15, §4.1.3]). We keep the same notation for their self-adjoint extensions.
We denote by E and Eπ their spectral measures:

R =
�

R

λ dE(λ) and π(R) =
�

R

λ dEπ(λ).

We will be interested in the positive Rockland operators,

∀f ∈ S(G)
�

G

Rf(x)f(x) dx ≥ 0.

They are formally self-adjoint. One easily checks that the operator in (2.11)
is positive. This shows that positive Rockland operators always exist on
any graded Lie group. Note that if G is stratified and L is a (left-invariant
negative) sub-Laplacian as in (2.10), then it is customary to −L as a positive
Rockland operator.

The point 0 in the spectrum of a positive Rockland operator is negli-
gible with respect to the spectral measure (see [22] or [15, Remark 4.2.8.4]).
Consequently, one can define multiplier operators ofR on (0,∞), the value of
this multiplier function at 0 being negligible. The properties of the functional
calculus of R and of the group Fourier transform imply

Lemma 2.8. Let R be a positive Rockland operator of homogeneous de-
gree ν and f : R+ → C be a measurable function. Assume that the domain of
the operator f(R) =

	
R f(λ) dE(λ) contains S(G). Then for any φ ∈ S(G),

(f(rνR)φ) ◦Dr = f(R)(φ ◦Dr),

where ν denotes the homogeneous degree of R, and in the sense of distribution

(2.12) f(rνR)δ0(x) = r−Qf(R)δ0(r
−1x), x ∈ G,

where f(R)δ0 denotes the right convolution kernel of f(R).

Let us recall Hulanicki’s theorem (see [21] or [15, §4.5]).
Theorem 2.9 (Hulanicki). Let | · | be a quasi-norm on G, s ≥ 0, p ∈

[1,∞), and α ∈ Nn0 . Then there exist C > 0 and d ∈ N such that for any
f ∈ Cd(0,∞),�

G

(1 + |x|)s|Xαf(R)δ0(x)|p dx ≤ C sup
λ>0, `=0,...,d

(1 + λ)d|f (`)(λ)|,

provided that the supremum on the right-hand side is finite.
The same result holds with the right-invariant vector fields X̃j instead of

the left-invariant vector fields Xj.
Consequently, if f ∈S(R) (for instance in f ∈D(R)), then f(R)δ0∈S(G).

We will also use the fact that any two positive Rockland operators are
equivalent in the following sense (see [14] or [15, §4.4.5, especially Corollary
4.4.21]):
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Proposition 2.10.

• If R is a positive Rockland operator, then for any s ≥ 0 the powers Rs
defined by spectral calculus are (unbounded) operators on L2(G) with do-
mains containing S(G).
• Let R1 and R2 be two positive Rockland operators of homogeneous degrees
ν1 and ν2 respectively. Then for any s ≥ 0,

∃C > 0 ∀φ ∈ S(G) ‖Rs/ν11 φ‖L2(G) ≤ C‖R
s/ν2
2 φ‖L2(G).

Note that Proposition 2.10 implies that if the hypothesis (1.4) of Theorem
1.1 is satisfied for one positive Rockland operator, then it is satisfied for all.

2.4. Difference operators. The difference operators are aimed to re-
place the derivatives with respect to the Fourier variable in the Euclidean
case.

If q is a continuous function on G, we define ∆q via

∆qf̂(π) = FG(qf)(π), π ∈ Ĝ,
for any f ∈ D(G). As the group Fourier transform is injective and D(G)
is dense in Lp(G), p ∈ [1,∞), this defines the difference operator ∆q as a
(possibly) unbounded operator with domain in L2(Ĝ) or FL1(G) and values
in L∞(Ĝ). In particular, for α ∈ Nn0 , we set

∆α := ∆xα .

Remark 2.11. Assuming q to be a continuous function with polynomial
growth, one can define difference operators on S(G). Moreover, under further
hypotheses on q, difference operators may be defined on the image of the
group Fourier transform of more general distribution spaces on G where
D(G) is not necessarily dense, for instance on F−1G L∞(Ĝ). In fact, in [15,
Section 5.2.1], difference operators are defined in a slightly more general
context.

The difference operators as defined above were described concretely in
the case of the Heisenberg group [15, Section 6.3], and one easily checks that
they coincide with the difference-differential operators of [9] (see also [17] and
[2, 3]). In the case of compact Lie groups, an intrinsic notion of difference
operators can be defined even on symbols that are not Fourier transforms of
distributions (see [12, 13]). On a general Lie group (even restricting oneself
to the nilpotent class), to the authors’ knowledge at the time of writing,
there is not a more intrinsic way to define difference operators than the one
above.

The difference operators satisfy the Leibniz rule [15, §5.2.2]:

(2.13) ∆α(σ1σ2) =
∑

[α1]+[α2]=[α]

cα1,α2∆
α1σ1∆

α2σ2,
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where cα1,α2 are universal constants. By ‘universal constants’, we mean that
they depend only on G and the choice of the basis {Xj}nj=1.

3. The Sobolev spaces on Ĝ. The aim of this section is to study
Sobolev-type spaces on Ĝ defined in the following way:

Definition 3.1. For each s ≥ 0, we define Hs(Ĝ) as the space of mea-
surable fields σ = {σ(π)} such that σ ∈ L2(Ĝ) and ∆(1+|·|)sσ ∈ L2(Ĝ) where
| · | is a quasi-norm on G.

This means that Hs(Ĝ) is the image via the group Fourier transform of
the subspace L2(G, (1 + | · |)2s) of L2(G):

Hs(Ĝ) = FG
(
L2(G, (1 + | · |)2s)

)
.

We will call Hs(Ĝ) the Sobolev spaces on Ĝ. This vocabulary is justified by
the properties proved in this section. We start by showing that the Sobolev
spaces on Ĝ are Hilbert spaces independent of the quasi-norm:

Proposition 3.2. Let s ≥ 0.

(1) The space Hs(Ĝ) is independent of the quasi-norm | · |.
(2) Let σ = {σ(π) : π ∈ Ĝ} be a µ-measurable field of operators and let

s ≥ 0. The following conditions are equivalent:

• σ ∈ Hs(Ĝ),
• there exists a quasi-norm | · |′ such that F−1G σ ∈ L2(G, (1 + | · |′)2s),
• F−1G σ ∈ L2(G, (1 + | · |′)2s) for any quasi-norm | · |′,
• F−1G σ ∈ L2(G,ω2

s) for any continuous function ωs : G→ (0,∞) equiv-
alent to (1 + | · |)s in the sense that

(3.1) ∃C > 0 ∀x ∈ G C−1(1 + |x|)s ≤ ωs(x) ≤ C(1 + |x|)s

for one (and then every) quasi-norm | · |.

(3) Fixing a weight ωs satisfying (3.1), the space Hs(Ĝ) is a Hilbert space
when equipped with the sesquilinear form given via

(σ1, σ2)Hs := (∆ωsσ1, ∆ωsσ2)L2(Ĝ)
=

�

Ĝ

tr(∆ωsσ1(π)∆ωsσ2(π)∗) dµ(π).

The corresponding norm is given by

‖σ‖Hs,ωs := ‖∆ωsσ‖L2(Ĝ)
= ‖ωsF−1G σ‖L2(G).

Any two weights ω(1)
s and ω

(2)
s satisfying (3.1) yield equivalent norms

on Hs(Ĝ).

Proof. For any ωs satisfying (3.1), and any quasi-norm | · |, we have
L2(G, (1+ | · |)s) = L2(G,ωs). If | · |′ is another quasi-norm, then (1+ | · |′)s is
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a continuous function satisfying (3.1) since two quasi-norms are equivalent
by Proposition 2.1. This together with the isometry FG : L2(G) → L2(Ĝ)
between Hilbert spaces implies the statement.

We may allow ourselves to denote the Hs(Ĝ)-norm by

‖σ‖Hs := ‖σ‖Hs,ωs

when the function ωs has been fixed.
The space Hs(Ĝ) is stable by taking the adjoint, because one easily

checks the following property: if σ = {σ(π) : π ∈ Ĝ} is in Hs(Ĝ), then
σ∗ = {σ(π)∗ : π ∈ Ĝ} is also in Hs(Ĝ) and

(3.2) ‖σ‖Hs,(1+|·|)s = ‖σ∗‖Hs,(1+|·|)s .

We have the following inclusions and log-convexity.

Lemma 3.3. The following continuous inclusions hold for s2 ≥ s1 ≥ 0:

L2(Ĝ) = H0(Ĝ) ⊃ Hs1(Ĝ) ⊃ Hs2(Ĝ).

If s is between the two non-negative numbers s1 and s2, then

‖σ‖Hs,ωs ≤ ‖σ‖θHs1 ,ωs1
‖σ‖1−θHs2 ,ωs2

,

having written s = θs1 + (1 − θ)s2, with θ ∈ [0, 1], and fixed a quasi-norm
| · | and ωs = (1 + | · |)s.

Proof. The inclusions follow readily from (1 + | · |)s1 ≤ (1 + | · |)s2 when
s2 ≥ s1 ≥ 0. For the log-convexity, we may assume that θ 6= 0, 1. Let κ =
F−1G σ ∈ L2(Ĝ). We have

‖σ‖2Hs,ωs = ‖ωsκ‖2L2(G) = ‖(ωs1κ)2θ(ωs2κ)2(1−θ)‖L1(G)

≤ ‖(ωs1κ)2θ‖Lp(G)‖(ωs2κ)2(1−θ)‖Lq(G),

by Hölder’s inequality with p = 1/θ and q = 1/(1− θ).
The difference operators are continuous on Sobolev spaces:

Lemma 3.4. Let s ≥ 0. Let q be a continuous function on G such that
q/ω

d/s
s is bounded, where d ≥ 0 and ωs is a continuous function satisfy-

ing (3.1). Then ∆q maps continuously Hs+d(Ĝ) to Hs(Ĝ):

∃C > 0 ∀σ ∈ Hs+d(Ĝ) ‖∆qσ‖Hs ≤ C‖σ‖Hs+d .

An example of such a function q is any d-homogeneous polynomial. In par-
ticular

‖∆xασ‖Hs ≤ C‖σ‖Hs+[α] .

Proof. We have

‖∆qσ‖Hs = ‖qωsF−1G σ‖L2(G)

≤ ‖q/ωd/ss ‖L∞(G)‖ωd/s+1
s F−1G σ‖L2(G) = ‖q/ωd/ss ‖L∞(G)‖σ‖Hs,ω′

s′
,
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where ω′s′ is the continuous function ωd/s+1
s which satisfies (3.1) with s′ =

d+ s.

Sobolev spaces with integer exponents admit an equivalent description:

Lemma 3.5. If s is a common multiple of υ1, . . . , υn, i.e. s ∈ νoN, then

σ ∈ Hs(Ĝ) ⇐⇒ ∀α ∈ Nn0 , [α] ≤ s, ∆xασ ∈ L2(Ĝ).

Moreover
∑

[α]≤s ‖∆xα · ‖L2(Ĝ)
is an equivalent norm on Hs(Ĝ).

Proof. Let s ∈ νoN. We consider the quasi-norm | · | = | · |νo given by
(2.3) and the continuous function ωs = (1+| · |2νo)s/(2νo) which satisfies (3.1).
Then ω2

s is a polynomial in x, and more precisely a linear combination of
squared monomials:

ω2
s(x) =

∑
[α]≤s

cα(xα)2

for some coefficients (cα) depending on s and G. Thus

‖σ‖2Hs,ωs = ‖ωsF−1G σ‖2L2(G) =
�

G

∣∣∣∑
[α]≤s

cα(xα)2
∣∣∣|F−1G σ(x)|2 dx

≤
∑
[α]≤s

|cα|
�

G

|xαF−1G σ(x)|2 dx ≤ C
∑
[α]≤s

‖∆xασ‖2L2(Ĝ)
.

We have obtained

‖σ‖Hs,ωs ≤ C
∑
[α]≤s

‖∆xασ‖L2(Ĝ)
.

The reverse inequality follows from Lemma 3.4.

Remark 3.6.

• In Lemma 3.5, (xα) may be replaced by any basis of homogeneous poly-
nomials.
• In Lemma 3.5, the hypothesis of divisibility of s by υ1, . . . , υn cannot be

removed. Indeed, fix let us fix an index ` = 1, . . . , n, and construct a
sequence of symbols σk, k ∈ N, via F−1G σk(x) = 1|x`−k|<1

∏
j 6=` 1|xj |<1.

One easily checks that

‖σk‖Hs � ks but
∑
[α]≤s

‖∆xασk‖L2(Ĝ)
�
∑
[α]≤s

kα` .

If s is a positive integer which is not divisible by υ` then k−s
∑

[α]≤s k
α`

→ 0 as k →∞.

The following analogue of the Sobolev embedding holds as an easy con-
sequence of Corollary 2.3 together with (2.7):
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Lemma 3.7. If σ ∈ Hs(Ĝ) with s > Q/2 then σ ∈ FGL1(G) and

sup
π∈Ĝ
‖σ‖L (Hπ) ≤ ‖F

−1
G σ‖L1(G) ≤ C‖σ‖Hs .

As in the Euclidean case, we obtain an algebra for ‘pointwise multiplica-
tion’ in the following sense:

Lemma 3.8. For any σ and τ in Hs(Ĝ), the product στ = {σ(π)τ(π) :

π ∈ Ĝ} satisfies (with possibly unbounded norms)

‖στ‖Hs ≤ C
(
‖σ‖Hs‖F−1G τ‖L1(G) + ‖F−1G σ‖L1(G)‖τ‖Hs

)
,

with a constant C > 0 independent of σ and τ .
Hence for s > Q/2, if σ, τ ∈ Hs(Ĝ) then στ ∈ Hs(Ĝ), and Hs(Ĝ) is a

(non-commutative) algebra.

Note that Lemma 2.2 only yields

(3.3) ‖στ‖Hs . ‖F−1G τ‖L1(ωs)‖σ‖Hs

when a quasi-norm | · | and ωs = (1 + | · |)s with s ≥ 0 have been fixed. This
does not prove Lemma 3.8.

Proof of Lemma 3.8. We fix a quasi-norm | · | and ωs = (1 + | · |)s. As a
quasi-norm satisfies the triangle inequality (see Proposition 2.1), one easily
checks that

(3.4) ∃C = Cs,|·| ∀x, y ∈ G ωs(x) ≤ C
(
ωs(xy

−1) + ωs(y)
)
.

Let σ, τ ∈ Hs(Ĝ) and f := F−1G σ, g := F−1G τ . Then

‖στ‖Hs,ωs = ‖ωs g ∗ f‖L2(G).

The inequality in (3.4) implies

ωs |g ∗ f | ≤ C
(
(ωs|g|) ∗ |f |+ |g| ∗ (ωs|f |)

)
,

thus we obtain

‖ωs g ∗ f‖L2(G) ≤ C
(
‖(ωs|g|) ∗ |f |‖L2(G) + ‖|g| ∗ (ωs|f |)‖L2(G)

)
≤ C

(
‖ωs|g|‖L2(G)‖f‖L1(G) + ‖g‖L1(G)‖ωsf‖L2(G)

)
,

by Young’s inequality (see (2.1)). With Lemma 3.7, the statement follows
easily.

4. The Mikhlin–Hörmander condition on Ĝ. In the Euclidean case,
the Mikhlin–Hörmander condition which implies that a function is an Lp-
multiplier for all p > 1 is the membership in Sobolev spaces locally uniformly
(see the introduction). The aim of this section is to define membership in
Sobolev spaces locally uniformly in our context and express our main mul-
tiplier theorem in term of this membership. This requires first to define
dilations on Ĝ.
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4.1. Dilations on Ĝ. In this section, we define dilations on the set Ĝ.
This is possible thanks to the following lemma whose proof is a routine
exercise in representation theory:

Lemma 4.1.

(1) If π is a unitary irreducible representation of G and r > 0, then setting

(4.1) r · π(x) = π(rx), x ∈ G,
we have defined a unitary irreducible representation r · π of G.

(2) If π1 and π2 are equivalent unitary irreducible representations of G, then,
for any r > 0, r · π1 and r · π2 are equivalent unitary irreducible repre-
sentations of G.

Definition 4.2. For any π ∈ Ĝ and any r > 0, equation (4.1) defines a
new class

r · π := Dr(π) ∈ Ĝ.
These dilations define an action of R∗+ on Ĝ which interacts nicely with

the group structure:

Lemma 4.3. Let π ∈ Ĝ and r > 0.

• For any α ∈ Nn,
r · π(Xα) = r[α]π(Xα).

• For any positive Rockland operator R of degree νR,

r · π(R) = rνRπ(R),

and if f ∈ L∞(R) then (spectral definitions)

f(r · π(R)) = f(rνRπ(R)).

• If κ ∈ L2(G) ∪ L1(G) then

(r · π)(κ) = π(r−Qκ(r−1 · )).
Consequently,

∆α{κ̂(r · π)} = r[α](∆ακ̂)(r · π).

The proof of Lemma 4.3 is left to the reader.
The Sobolev spaces on Ĝ are invariant under these dilations:

Lemma 4.4. Let σ ∈ L2(Ĝ) and s ≥ 0. If σ ∈ Hs(Ĝ) then σ ◦ Dr =

{σ(r · π) : π ∈ Ĝ} is in Hs(Ĝ) for all r > 0. Furthermore fix a quasi-norm
| · | and ωs = (1 + | · |)s. For every r > 0 and σ ∈ L2(Ĝ), we have

‖σ ◦Dr‖Hs,ωs ≤ (1 + r)sr−Q/2‖σ‖Hs,ωs .

Proof. Lemma 4.3 and the change of variable Dr yield

‖σ ◦Dr‖Hs,ωs = ‖ωsr−Q(F−1G σ) ◦Dr−1‖L2 = r−Q/2‖(1 + r| · |)sF−1G σ‖L2 .

We conclude with (1 + r| · |)s ≤ (1 + r)sωs.
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4.2. Fields locally uniformly in Hs(Ĝ). The aim of this section is
to define and study the Banach space of fields locally uniformly in Hs(Ĝ).
In the Euclidean case, membership in Sobolev spaces locally uniformly is
the Mikhlin–Hörmander condition which implies that a function is an Lp-
multiplier for all p > 1. This motivates the following definition.

Definition 4.5. Let s ≥ 0. We say that a measurable field of operators
σ = {σ(π) : π ∈ Ĝ} is locally uniformly in Hs(Ĝ) on the right, respectively
on the left, when there exist a positive Rockland operator R and a non-zero
function η ∈ D(0,∞) such that the quantity

(4.2) ‖σ‖Hs
l.u.,R,η,R := sup

r>0
‖{σ(r · π)η(π(R)) : π ∈ Ĝ}‖Hs

or respectively

(4.3) ‖σ‖Hs
l.u.,L,η,R := sup

r>0
‖{η(π(R)) σ(r · π) : π ∈ Ĝ}‖Hs

is finite.

Our first task will be to show that, as in the Euclidean case, this definition
does not depend on the cut-off function. Here we also have to prove that it
does not depend on the Rockland operator. This is the object of the following
statement, which will be proved in Section 5.1.

Proposition 4.6. Let σ = {σ(π) : π ∈ Ĝ} be a measurable field of
operators such that ‖σ‖Hs

l.u.,R,η,R is finite for some positive Rockland operator
R and η ∈ D(0,∞)\{0}. Then for any positive Rockland operator S and any
ζ ∈ D(0,∞), the quantity ‖σ‖Hs

l.u.,R,ζ,S is finite and there exists a constant
C > 0 (depending on R,S and η, ζ but not on σ) such that

‖σ‖Hs
l.u.,R,ζ,S ≤ C‖σ‖Hs

l.u.,R,η,R.

We have a similar result for the left case, and we denote by Hs
l.u.,R(Ĝ),

resp. Hs
l.u.,L(Ĝ), the space of measurable fields which are locally uniformly

in Hs(Ĝ) on the right, respectively on the left. Furthermore these spaces are
Banach spaces with the following properties:

Corollary 4.7.

(1) If s ≥ 0, then Hs
l.u.,R(Ĝ) is a Banach space when equipped with any

equivalent norm ‖ · ‖Hs
l.u.,R,η,R, where η ∈ D(0,∞) is non-zero and R is

a positive Rockland operator.
(2) We have the continuous inclusion

Hs1
l.u.,R(Ĝ) ⊂ Hs2

l.u.,R(Ĝ), s1 ≥ s2.

(3) If σ ∈ Hs
l.u.,R(Ĝ) and ro > 0, then σ ◦Dro ∈ Hs

l.u.,R(Ĝ) satisfies
‖σ ◦Dro‖Hs

l.u.,R,η,R = ‖σ‖Hs
l.u.,R,η(r

−1
o ·),R.
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(4) If s > Q/2, we have a continuous inclusion of Sobolev type

Hs
l.u.,R ⊂ L∞(Ĝ).

We have similar statements for the left case.

This corollary will be proved in Section 5.2. We can already point out
that taking the adjoint provides the link between the left and right cases:

Lemma 4.8. Let σ = {σ(π) : π ∈ Ĝ} be a µ-measurable field of operators
and s ≥ 0. Then

σ ∈ Hs
l.u.,R(Ĝ) ⇐⇒ σ∗ ∈ Hs

l.u.,L(Ĝ),

and in this case
‖σ‖Hs

l.u.,R,η,R = ‖σ∗‖Hs
l.u.,L,η,R.

We can reverse the rôles of left and right.

Lemma 4.8 follows readily from (3.2).
The following statement gives sufficient conditions for the membership

in Hs
l.u.,R(Ĝ) and Hs

l.u.,L(Ĝ).

Proposition 4.9. Let σ = {σ(π) : π ∈ Ĝ} be a µ-measurable field of
operators and s ≥ 0. Let R be a positive Rockland operator and let η ∈
D(0,∞) be non-zero.

(Left) If π(R)[α]/ν∆ασ ∈ L∞(Ĝ) for all |α| ≤ N and some N ∈ N divisible
by υ1, . . . , υn, then σ ∈ HN

l.u.,L(Ĝ) and

‖σ‖HN
l.u.,L,η,R

≤ C
∑

[α]≤N

sup
π∈Ĝ
‖π(R)[α]/ν∆ασ(π)‖L (Hπ),

where the constant C > 0 does not depend on σ.
(Right) If ∆ασπ(R)[α]/ν ∈ L∞(Ĝ) for all |α| ≤ N and some N ∈ N divisible

by υ1, . . . , υn, then σ ∈ HN
l.u.,R(Ĝ) and

‖σ‖HN
l.u.,R,η,R

≤ C
∑

[α]≤N

sup
π∈Ĝ
‖∆ασ(π)π(R)[α]/ν‖L (Hπ),

where the constant C > 0 does not depend on σ.

Proposition 4.9 will be shown in Section 5.3. Note that in the statement
above, the meaning of ∆ασ(π) requires the slightly more general definition
of difference operator alluded to in Remark 2.11.

Remark 4.10. The suprema in Proposition 4.9 are independent of the
choice of a positive Rockland operator; see Propositions 2.10 and 4.6. More-
over, the condition described in Proposition 4.9 is invariant under dilation
by part (3) of Corollary 4.7, and for the suprema involved in Proposition 4.9
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by Lemma 4.3 and the following calculations:

π(R)[α]/ν∆α(σ ◦Dro)(π) = r[α]o π(R)[α]/ν∆α(σ)(ro · π)

= (ro · π)(R)[α]/ν∆α(σ)(ro · π)

= π1(R)[α]/ν∆ασ(π1),

with π1 = ro · π. Therefore

(4.4) sup
π∈Ĝ
‖π(R)[α]/ν∆α(σ ◦Dro)(π)‖L (Hπ)

= sup
π1∈Ĝ

‖π1(R)[α]/ν∆ασ(π1)‖L (Hπ1 ).

4.3. The main result. The main result of this article is Theorem 1.2,
which we now rephrase as:

Theorem 4.11. Let G be a graded nilpotent Lie group. If σ = {σ(π) :

π ∈ Ĝ} ∈ Hs
l.u.,R(Ĝ) ∩Hs

l.u.,L(Ĝ) for some s > Q/2 then the corresponding
operator T = Tσ is bounded on Lp(G) for any 1 < p <∞. Furthermore,

‖T‖L (Lp(G)) ≤ C max
(
‖σ‖Hs

l.u.,R,η,R, ‖σ‖Hs
l.u.,L,η,R

)
,

where C > 0 is a constant independent of σ but may depend on p, s,G and
the choice of η ∈ D(0,∞) and a positive Rockland operator R.

By Proposition 4.9, Theorem 4.11 implies Theorem 1.1.
The hypotheses and the conclusion of Theorems 4.11 and 1.1 are ‘dilation-

invariant’ and do not depend of a choice of a Rockland operator or a func-
tion η; see Remark 4.10 and Corollary 4.7.

Theorem 4.11 is proved in Section 5.4 and its proof yields the following
more precise version:

Corollary 4.12. Let G be a graded nilpotent Lie group. Let σ = {σ(π) :

π ∈ Ĝ} be a µ-measurable field of operators in L2(Ĝ) and let Tσ be the
corresponding Fourier multiplier operator on S(G).

(1) If σ is in Hs
l.u.,R or Hs

l.u.,L for some s > Q/2, then T is bounded on
L2(G) with

‖T‖L (L2(G)) = sup
π∈Ĝ
‖σ(π)‖op ≤ C2


‖σ‖Hs

l.u.,R

resp.
‖σ‖Hs

l.u.,L
,

and C2 a constant independent of σ.
(2) If σ ∈ Hs

l.u.,R for some s > Q/2 then T is of weak type L1. Moreover
there exists a constant C1 > 0 independent of σ such that

∀f ∈ S(G) ∀α > 0 |{x : |Tf(x)| > α} ≤ C1

‖σ‖Hs
l.u.,R

α
‖f‖L1(G).
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For each p ∈ (1, 2), there exists a constant Cp > 0 independent of σ such
that

∀f ∈ S(G) ‖Tf‖Lp ≤ Cp‖σ‖Hs
l.u.,R
‖f‖Lp(G).

(3) If σ ∈ Hs
l.u.,L for some s > Q/2, then T ∗ is of weak type L1. Moreover

there exists a constant C1 > 0 independent of σ such that

∀f ∈ S(G) ∀α > 0 |{x : |T ∗f(x)| > α} ≤ C1

‖σ‖Hs
l.u.,L

α
‖f‖L1(G).

For each p ∈ (2,∞), there exists a constant Cp > 0 independent of σ
such that

∀f ∈ S(G) ‖Tf‖Lp ≤ Cp‖σ‖Hs
l.u.,L
‖f‖Lp(G).

In the statement above, ‖σ‖Hs
l.u.,R

denotes a choice of norms ‖σ‖Hs
l.u.,R,R,η,

and similarly for the left case. The constants in the statement depend on this
choice.

5. Proofs

5.1. Proof of Proposition 4.6. Let η and R be fixed as in Proposi-
tion 4.6. We may assume η is real-valued (otherwise we consider separately
<η and =η). Let co > 0 be such that 2coI intersects I where I is an open
interval inside the support of η. For λ ∈ R and j ∈ Z, we set

ηj(λ) = η(2−cojλ) and α(λ) :=
∑
j∈Z

η2j (λ).

One easily checks that α is constantly 0 on (−∞, 0] and smooth and valued
in (0,∞) on (0,∞). Furthermore,

∀λ ∈ R ∀j ∈ Z α(2jcoλ) = α(λ), and ∀λ > 0
∑
j∈Z

η2j
α

(λ) = 1,

and idHπ =
∑

j∈Z
η2j
α (π(R)) with convergence in the strong operator topology

of L (Hπ). Hence,

‖σ(r ·π)ζ(π(S))‖Hs ≤
∑
j∈Z

Ej where Ej :=

∥∥∥∥σ(r ·π)
η2j
α

(π(R))ζ(π(S))

∥∥∥∥
Hs

.

Case j ≥ 0. By (3.3), we have

Ej . ‖σ(r · π)ηj(π(R))‖Hs

∥∥∥∥F−1G ηj
α

(π(R))ζ(π(S))

∥∥∥∥
L1(ωs)

.

Lemma 4.3 yields ‖σ(r · π)ηj(π(R))‖Hs . 2jc0Q/(2νR)‖σ‖Hs
l.u.,R,η,R, while by
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Lemma 2.2 the L1(ωs)-norm is

.

∥∥∥∥F−1G {
ηj
α

(π(R))π(R)−N
}∥∥∥∥

L1(ωs)

‖F−1G {π(R)Nζ(π(S))}‖L1(ωs)

= 2−jc0N
∥∥∥∥λ−Nη0α

(2−jc0R)δ0

∥∥∥∥
L1(ωs)

‖RNζ(S)δ0‖L1(ωs)

for a suitable positive integer N . By Hulanicki’s theorem (Theorem 2.9),
ζ(S)δ0 ∈ S(G) so the second L1(ωs)-norm is finite, and the first one is
. 2jc0d for some d ∈ N which depends on s,R, G but not on N . Hence we
have obtained Ej . 2jc0(d−N+Q/2)‖σ‖Hs

l.u.,R,η,R, and choosing N > d+Q/2

we have
∑

j≥0Ej . ‖σ‖Hs
l.u.,R,η,R.

Case j < 0. By Lemma 4.3 and (3.3), we have

Ej . 2
− jco
νR

(s−Q/2)‖σ‖Hs
l.u.,R,R,η

∥∥∥∥F−1G {
η

α
(π(R))ζ(2

−j coνS
νR · π(S))

}∥∥∥∥
L1(ωs)

.

By Lemma 2.2, the L1(ωs)-norm is

.

∥∥∥∥F−1G {
η

α
(π(R))π(S)N

′
}∥∥∥∥

L1(ωs)

‖F−1G {π(S)−N
′
ζ(2
−j coνS

νR · π(S))}‖L1(ωs)

=

∥∥∥∥S̃N ′ ηα(R)δ0

∥∥∥∥
L1(ωs)

2
jN ′ co

νR ‖(λ−N ′ζ)(2
j co
νR S)‖L1(ωs)

for a suitable positive integer N ′. By Hulanicki’s theorem (Theorem 2.9),
η
α(R)δ0 ∈ S(G) so the first L1(ωs)-norm is finite, and the second one is

. 2
|j| c0
νR

d′ for some d′ ∈ N which depends on s,S, G but not on N ′. Hence
we have obtained Ej . 2

j
c0
νR

(−d′+N ′+Q/2−s)‖σ‖Hs
l.u.,R,η,R, and choosing an

integer N ′ such that N ′ > d′ −Q/2 + s we get
∑

j<0Ej . ‖σ‖Hs
l.u.,R,η,R.

This concludes the proof of Proposition 4.6.

5.2. Proof of Corollary 4.7. If ‖σ‖Hs
l.u.,R,η,R = 0, then by Lemma 4.4,

‖ση(rπ(R))‖Hs = 0,

and the field σ(π)η(rπ(R)) is identically zero for any r > 0, since Hs(Ĝ) is
a normed space. Choosing η such that e.g. η ≡ 1 on [1, 2], this implies that
for any a, b ≥ 0, σ(π)Eπ[a, b] ≡ 0 where Eπ is the spectral resolution of π(R)
(or equivalently the group Fourier transform of the spectral resolution of R;
see [15]). Hence σ = 0.

Let {σ`} be a Cauchy sequence in Hs
l.u.,R(Ĝ), that is,

(5.1) ∀ε > 0 ∃`ε ∈ N ∀`1, `2 ≥ `ε ∀r > 0 ‖(σ`1−σ`2)(r·π)η(π(R))‖Hs ≤ ε.
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This implies that {σ`(r · π)η(π(R))} is a Cauchy sequence in the Banach
space Hs(Ĝ) for each r > 0 fixed. For the same reasons as above, this shows
that {σ`Eπ[a, b]} is a Cauchy sequence in Hs(Ĝ). Hence it converges towards
a limit σ([a,b]) in Hs(Ĝ) with σ([a,b]) = σ([c,d])Eπ[a, b] if [a, b] ⊂ [c, d]. This
defines a field of operators σ which satisfies, for each r > 0 fixed,

lim
`→∞

σ`(r · π)η(π(R)) = σ(r · π)η(π(R)).

Passing to the limit in (5.1) shows that σ is also the limit of {σ`} inHs
l.u.,R(Ĝ).

This shows part (1) of Corollary 4.7.
Part (2) follows from the similar inclusions for Hs(Ĝ) (see Lemma 3.3).

Part (3) is easily checked.
It remains to show part (4). Let s > Q/2. We may choose η ∈ D(0,∞)

supported in [1/2, 4] such that 0 ≤ η ≤ 1 and η ≡ 1 on [1, 2]. Functional
calculus yields

sup
π∈Ĝ
‖σ(π)Eπ[r−1, 2r−1]‖L (Hπ) ≤ sup

π∈Ĝ
‖σ(r · π)E[1, 2]η(π(R))‖L (Hπ)

≤ sup
π∈Ĝ
‖σ(r · π)η(π(R))‖L (Hπ) ≤ C‖σ‖Hs

l.u.,R,η,R

by the Sobolev embedding of Hs(Ĝ) (see Lemma 3.7). Here, the constant
C is independent of r > 0, and therefore the supremum over r > 0 of
sup

π∈Ĝ ‖σ(π)Eπ[r−1, 2r−1]‖L (Hπ) is finite. This shows that σ ∈ L∞(Ĝ) and
concludes the proof of Corollary 4.7.

5.3. Proof of Proposition 4.9. We will prove the second statement,
for the right spaces. We have already noted that the statement requires
the slightly more general definition of difference operator alluded to in Re-
mark 2.11. This is also the case for this proof.

Let N ∈ νoN, that is, a positive integer divisible by υ1, . . . , υn. Let σ ∈
L∞(Ĝ) be such that ∆ασπ(R)[α]/ν ∈ L∞(Ĝ) for all |α| ≤ N . By Lemma 3.5,
we have

‖σ(r · π)η(π(R))‖
HN (Ĝ)

�
∑

[α]≤N

‖∆xα(σ(r · π)η(π(R)))‖
L2(Ĝ)

.
∑

[α1]+[α2]≤N

‖∆xα1 (σ(r · π))∆xα2η(π(R))‖
L2(Ĝ)

by the Leibniz formula (see (2.13)). Inserting powers of π(R), we have for
each term above the estimate

‖∆xα1 (σ(r · π))∆xα2η(π(R))‖
L2(Ĝ)

≤ ‖∆xα1 (σ(r · π))π(R)[α1]/ν‖
L∞(Ĝ)

‖π(R)−[α1]/ν∆xα2η(π(R))‖
L2(Ĝ)

.
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For the first term, by (4.4), we have

‖∆xα1 (σ(r · π))π(R)[α1]/ν‖
L∞(Ĝ)

= sup
π1∈Ĝ

‖∆ασ(π1)π1(R)[α]/ν‖L (Hπ1 ).

For the second term, we define ηM ∈ D(0,∞) via ηM (λ) = λ−Mη(λ) for an
M ∈ N to be chosen. Using again the Leibniz formula, we have

‖π(R)−[α1]/ν∆xα2η(π(R))‖
L2(Ĝ)

.
∑

[α3]+[α4]=[α2]

‖π(R)−[α1]/ν(∆xα3π(R)M )π(R)[α1]/ν−Mν+α3‖
L∞(Ĝ)

× ‖π(R)−[α1]/ν+Mν−α3∆xα4ηM (π(R))‖
L2(Ĝ)

.

By Hulanicki’s theorem (see Theorem 2.9), the function xα4ηM (π(R))δ0 is
Schwartz. We fix M such that −[α1]/ν + Mν − α3 ≥ 0 for all α3 as above.
In this way, xα4ηM (π(R))δ0 is in the domain of R−[α1]/ν+Mν−α3 by Proposi-
tion 2.10. Hence ‖π(R)−[α1]/ν+Mν−α3∆xα4ηM (π(R))‖

L2(Ĝ)
is finite. For the

L∞(Ĝ) term, easy computations [15, Lemma 5.2.9] show that ∆xα3π(R)M

is the image via F of a homogeneous left-invariant differential operator T
of degree Mν0 − [α3]. By [15, Theorem 4.4.16], R−[α1]/νTR[α1]/ν−Mν+α3 is
bounded, thus ‖π(R)−[α1]/ν(∆xα3π(R)M )π(R)[α1]/ν−Mν+α3‖

L∞(Ĝ)
is finite.

We have therefore obtained

‖σ(r · π)η(π(R))‖
HN (Ĝ)

.
∑

[α1]≤N

sup
π1∈Ĝ

‖∆ασ(π1)π1(R)[α]/ν‖L (Hπ1 ).

Taking the supremum over r on the left-hand side proves Proposition 4.9 for
the condition on the right. For the condition on the left, one can proceed in
a similar way or obtain it by taking the adjoint of the condition on the right
(see Lemma 4.8).

5.4. Proof of Theorem 4.11. Let σ ∈ Hs
l.u.,R with s > Q/2. We

want to show that the Fourier multiplier operator Tσ admits an Lp-bounded
extension. We will follow the classical way: we prove that Tσ is a Calderón–
Zygmund operator on the space G of homogeneous type (see [5, Ch. III]).

Let η ∈ D(0,∞) be supported in [1/2, 2], valued in [0, 1] and satisfying∑
j∈Z ηj ≡ 1 on (0,∞) where ηj(λ) = η(2−jλ). For each j ∈ Z and π ∈ Ĝ,

we set
σj(π) = σ(2−j · π)η(π(R)).

Then σj ∈ Hs(Ĝ) with

(5.2) ‖σj‖Hs ≤ ‖σ‖Hs
l.u.,R,R,η.

By Corollary 4.7(4), σ and the σj ’s are in L∞(Ĝ) and thus define Fourier
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multipliers

T : φ 7→ F−1G {σφ̂} and Tj : φ 7→ F−1G {σjφ̂},

which are bounded on L2(G). Their convolution kernels are respectively κ :=
F−1G σ ∈ S ′(G) and κj := F−1G σj ∈ L2(G).

By Lemma 3.7, the functions κj are integrable.

Remark 5.1. Even if it is not needed, we can easily show that
�

G

κj(x) dx = 0.

Indeed, denoting by 1
Ĝ
the trivial representation, we have

�

G

κj(x) dx = κ̂j(1Ĝ) = σj(1Ĝ) = σ(2−j · 1
Ĝ

)η(1
Ĝ

(R)).

Since the infinitesimal representation of 1
Ĝ

is identically zero and η is sup-
ported away from 0, we have η(1

Ĝ
(R)) = 0 and therefore the integral of κj

is zero.

The sum
∑

j∈Z ηj(R) converges towards the identity in the strong oper-
ator norm on L2(G). Formally,

T =
∑
j∈Z

Tjηj(R), σ =
∑
j∈Z

σj(2
jπ), and κ =

∑
j∈Z

2−Qjκj(2
−j · ).

Let us prove that the last sum has a meaning and that the first Calderón–
Zygmund condition is statisfied:

Lemma 5.2. The function κ is locally integrable on G \ {0}. Moreover
the sum

∑
j∈Z 2−Qjκj(2

−j · ) converges to κ in L1
loc(G \ {0}).

Proof. Fix m ∈ Z. By the change of variable given by the dilation Dj ,
for each j ∈ Z we have

�

2m≤|x|≤2m+1

|2−Qjκj(2−jx)| dx =
�

2m−j≤|x|≤2m−j+1

|κj(x)| dx.

If m− j ≥ 0, then
�

2m−j≤|x|≤2m−j+1

|κj(x)| dx =
�

2m−j≤|x|≤2m−j+1

|κj(x)|(1 + |x|)ε(1 + |x|)−ε dx

. 2(m−j)(−ε)‖κj(1 + | · |)ε‖L1(G) . 2(j−m)ε‖κj(1 + | · |)s‖L2(G),

by Corollary 2.3, as long as s− ε > Q/2.
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If m− j < 0, then by the Cauchy–Schwarz inequality we have
�

2m−j≤|x|≤2m−j+1

|κj(x)| dx =
�

G

(1 + |x|)s|κj(x)|(1 + |x|)−s12m−j≤|x|≤2m−j+1 dx

≤ ‖κj(1 + | · |)s‖L2(G)‖(1 + | · |)−s12m−j≤|x|≤2m−j+1‖L2(G).

Note that

‖(1 + | · |)−s12m−j≤|x|≤2m−j+1‖L2(G) . 2(m−j)Q/2,

and by (5.2),

‖κj(1 + | · |)s‖L2(G) = ‖σj‖Hs ≤ ‖σ‖Hs
l.u.,R,R,η.

We choose ε = (s+Q/2)/2. We can now sum over j ∈ Z to obtain

∑
j∈Z

�

2m≤|x|≤2m+1

|2−Qjκj(2−jx)| dx =
m−1∑
j=−∞

+
∞∑
j=m

.
m−1∑
j=−∞

2
Q
2
(m−j)‖σ‖Hs

l.u.,R,R,η +

∞∑
j=m

2(j−m)ε‖σ‖Hs
l.u.,R,R,η . ‖σ‖Hs

l.u.,R,R,η.

This implies κ =
∑

j∈Z 2−Qjκj(2
−j · ) is integrable on {2m ≤ |x| ≤ 2m+1}.

Therefore κ is locally integrable on G \ {0}.
Let us prove the Calderón–Zygmund inequality on the kernel:

Lemma 5.3. Let us rewrite

K(x, y) = κ(y−1x) and d(x, y) = |y−1x|.
• There exists C > 0 such that for any distinct y, y′ ∈ G,�

d(x,y)>4cd(y,y′)

|K(x, y)−K(x, y′)| dx ≤ C‖σ‖Hs
l.u.,R,R,η.

• For K∗(x, y) = κ∗(y−1x) = κ̄(x−1y), there exists C > 0 such that for any
distinct y, y′ ∈ G,�

d(x,y)>4cd(y,y′)

|K∗(x, y)−K∗(x, y′)| dx ≤ C‖σ‖Hs
l.u.,L,R,η.

Here c denotes the constant in the triangle inequality for the quasi-norm
chosen (see Proposition 2.1).

Proof of Lemma 5.3. Let y, y′ ∈ G be distinct. Let h := y′−1y in G \ {0}
and let m ∈ Z be such that 2m ≤ 4c|h| < 2m+1. After the change of variable
z = y−1x we see that�

d(x,y)>4cd(y,y′)

|K(x, y)−K(x, y′)| dx =
�

|z|>4c|h|

|κ(z)− κ(hz)| dz ≤
∑
j∈Z

Ij ,



FOURIER MULTIPLIERS ON GRADED LIE GROUPS 27

where
Ij :=

�

|z|>4c|h|

|2−jQκj(2−jz)− 2−jQκj(2
−j(hz))| dz,

since κ =
∑

j 2−jQκ(2−j · ). Using the change of variable 2−jz = w, we have

Ij =
�

2j |w|>4c|h|

|κj(w)− κj((2−jh)w)| dw.

If j < m we use

Ij ≤
�

2j |w|>4c|h|

|κj(w)| dw +
�

2j |(2−jh)−1w′|>4c|h|

|κj(w′)| dw′,

after the change of variable w′ = (2−jh)w. The triangle inequality implies

2j |(2−jh)−1w′| > 4c|h| =⇒ |w′| > 3c2−j |h| ≥ 3
42−j+m.

Therefore,

Ij ≤ 2
�

|w|> 3
4
2−j+m

|κj(w)| dw . 2ε(j−m)‖(1 + | · |)εκj‖L1(G).

By Corollary 2.3 and Lemma 3.7 with (5.2),

‖(1 + | · |)εκj‖L1(G) . ‖σ‖Hs
l.u.,R,η.

So we have obtained, in the case j < m,

Ij . 2ε(j−m)‖σ‖Hs
l.u.,R,η.

If j ≥ m, we use the L1-mean value theorem given in Lemma 2.4:

Ij .
n∑
`=1

|2−jh|υ`‖X̃`κj‖L1(G) . 2m−j
n∑
`=1

‖X̃`κj‖L1(G),

as 1 ≤ υ1 ≤ · · · ≤ υn. By Corollary 2.3 and Lemma 3.7, we have

‖X̃`κj‖L1(G) . ‖(X̃`κj)(1 + | · |)s‖L2(G),

and by the Plancherel formula (see (2.8)),

‖(X̃`κj)(1 + | · |)s‖L2(G) = ‖σj(π)π(X`)‖Hs(Ĝ)

= ‖σ(2−j · π)η(π(R)) ω(π(R))π(X`)‖Hs(Ĝ)
,

where ω ∈ D(0,∞) is identically 1 on the support of η. By Hulanicki’s
theorem (Theorem 2.9), the function g` := F−1G {ω(π(R))π(X`)} is Schwartz.
By (3.3), we have

‖σ(2−j · π)η(π(R))ω(π(R))π(X`)‖Hs(Ĝ)
= ‖σ(2−j · π)η(π(R))ĝ`(π)‖

Hs(Ĝ)

. ‖σ(2−j · π)η(π(R))‖
Hs(Ĝ)

≤ ‖σ‖Hs
l.u.,R,R,η.
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So we have obtained, in the case j ≥ m,

Ij . 2m−j‖σ‖Hs
l.u.,R,R,η.

We can now go back to∑
j∈Z

Ij .
∑
j<m

2ε(j−m)‖σ‖Hs
l.u.,R,R,η +

∑
j≥m

2m−j‖σ‖Hs
l.u.,R,R,η . ‖σ‖Hs

l.u.,R,R,η.

For K∗, after the change of variable z = x−1y and setting h′ = y−1y′, we
see that �

d(x,y)>4cd(y,y′)

|K∗(x, y)−K∗(x, y′)| dx =
�

|z|>4c|h|

|κ(z)− κ(zh′)| dz.

We proceed exactly in the same way as above using left-invariant vector
fields X`.

Hence the operator T satisfies the hypotheses of the Calderón–Zygmund
theorem in the context of graded Lie groups, and more generally on spaces
of homogeneous type (cf. [5, Ch. III]). This implies Theorem 4.11 and yields
the following proof of Corollary 4.12.

Proof of Corollary 4.12. Part (1) follows from Corollary 4.7. For part (2),
Lemmata 5.2 and 5.3 show that, if σ ∈ Hs

l.u.,R for some s > Q/2, then κ is
a Calderón–Zygmund kernel (see [5, Ch. III] or [15, §3.2.3]). We proceed in
the same way for part (3), using Lemma 4.8: if σ ∈ Hs

l.u.,L for some s > Q/2,
then κ∗ is a Calderón–Zygmund kernel. As T ∗ = Tσ∗ , this shows (3).
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